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Abstract

In this paper, morphology of body and neural sys-

tems that de�ne the locomotion of multi-linked loco-

motive robots that can adapt the changes in environ-

ment are designed using the evolutionary computation.

the morphology of the body and neural systems have a

close relationship to each other. So the model of the

robot is constructed in which the morphology of the

body and neural systems emerge simultaneously. The

morphology of the body and neural systems are gener-

ated using a Genetic Programming. The tasks are that

the robots move on grounds including di�erent height

of hills from generation to generation in the two di-

mensional lateral simulated world under the e�ect of

the gravity. The robots are evaluated based both on a

moving distance and an e�ciency. As a result, vari-

ous combinations between the morphology of the body

and neural systems of the robots were emerged. More-

over, the robot went over the hills that were not expe-

rienced.

1 Introduction

Many types of robots are suggested in recent years.
Most of them mimic creatures including human. How-
ever, structures and components of the robots usually
di�er from those of living creatures. For example, ge-
ometry, weight and performance of electro-magnetic
motors usually used as the actuators for the robots
di�er from those of muscles of creatures. The same
discussion can be applied to body, sensors, neural sys-
tems and environment. What we should learn from
the living creatures is not the structures and com-
ponents themselves but how they emerged through
evolution. Optimum structures of robots can be de-
signed only when the components and morphology of
the robots including arti�cial actuators and sensors
suitable for the robots themselves are selected appro-
priately through evolution. Design of the robots, by
the robots, for the robots, should be achieved using
evolutionary method, whereas designers of the robots
should only set up an environmental constraint condi-
tion for the robots.

An arti�cial life is one of the answers. Sims [1] gen-
erated robots which can walk, jump and swim in com-
puter simulation. He also generated virtual creatures
which compete each other to obtain one resource [2].
Ventrella [3] presented evolutionary emergence of mor-
phology and locomotion behavior of animated charac-
ters. Kikuchi and Hara [4] studied a method of evo-
lutionary design of robots having tree structure that
change their morphology in order to adapt themselves
to the environmental conditions. However, all of them
do not consider how to make practical robots.

On the other hand, evolutionary method has been
tried to apply to the practical robots. Kitamura [5]
used Genetic Programming, GP [6], to emerge the sim-
ple linked-locomotive robot in virtual space. Lipson
[7] adopted the rapid prototyping to produce the crea-
tures that were generated in three-dimensional virtual
space. However, emerged creatures can generate only
simple periodical movement in assumed environment
because they cannot obtain any information from the
environment. So they cannot adapt the change in the
environment.

In this study, a method for designing the morphol-
ogy of the body and neural systems of multi-linked
locomotive robots that can adapt the change in the
environment is suggested. Both the morphology of the
body and neural systems are represented as a simple
large tree structure using GP. The robots move on the
grounds including di�erent height of hills from genera-
tion to generation in the two-dimensional lateral world
under the e�ect of the gravity. The problem for de-
signing such robots is treated as a multi optimization
problem, MOP. It is shown as a result that the gener-
ated robots have diverse morphology of the body and
neural systems and they have unique locomotive pat-
tern and their movements are fast and e�cient. The
capability and adaptability of the locomotion are also
shown by placing the robots on di�erent environment.

2 Model of Robots

2.1 Body

Parts of the robots are selected so that it is easy
for the robots to be produced in the future study.
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Fig. 1: Morphology of the body of robot
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Fig. 2: Tree structure of the morphology of body

Robots are composed of simple two-dimensional links
as shown in Fig. 1 as an example. Each link has the
parameters such as length of link, L, spring constant
of joint, k, the �rst angle of joint, �, and the location of
connecting point from the edge of the link, J . Values
of these parameters are obtained in the evolutionary
computation. When the values of these parameters
are de�ned, the structure of the robot is also de�ned.
Morphology of the robot is expressed as a tree struc-
ture including these parameters. First, a root link is
de�ned. Then, several child links are connected to the
root link at J . Other links can also be connected to
the child links. Now, the robots that have bodies com-
posed of links are simply expressed by tree structure
including parameters, L, k, � and J . If zero, one and
two links are connected to one link, structure of the
links is expressed in the program as Progn1, Progn2
and Term, respectively. For example, if one robot has
morphology as shown in Fig. 1, it can be expressed as
S expression of LISP language.

(Progn2 [0.03 0 0 0]
Progn1 [0.02 0.02 -30 0.02]

Term [0.02 0.02 -30 0.01]
Term [0.02 0.02 0 0.02]

)

This robot can be expressed as a tree structure as
shown in Fig. 2. One link can at most be connected
to two links. The maximum depth of the tree is two.
So the robots have at least two links and at most seven
links.

2.2 Neural systems

The driving torque of the each joint of the links
which decides the locomotion pattern is decided by the
neural system that exists in each joint. Input to the
neural system includes contact condition of some links
and angle condition of some joints. Output from the

Table 1: Nodes used in a digital neural model
Function nodes Number of argument

AND 2
NOT 1
IF 3
OR 2
= 2

Variable nodes Explanation
Ci Contact information of link i
Ak
i Angle information of joint i
1 Constant
0 Constant
Ei Output before one time step

neural system is the driving torque of each joint at the
next step in simulation. Because of this, the emerged
motion patterns are closely related to the contact con-
ditions with ground and angle of joints. The neural
system is composed of program language whose func-
tions are de�ned in advance. The grammar of this
program causes the neural system to construct a tree
structure. The maximum depth of this tree is �ve. Six
neural systems, DD, AA, ND, NA, DA and AD are
developed for comparing the capability of the robots
caused by the di�erence in the quantity of information
from/to the environment. DD and AA mean a digital
and an analog neural models in which inputs/outputs
are digital and analog values, respectively. ND and
NA are models to output digital and analog torque
without obtaining information from environment as an
input. DA is a model which obtains the information
from the environment as a digital value and generate
the driving torque as a analog value. AD is opposite
to DA model.

(a) Digital neural model
The digital neural model, DD, is the neural system

in which the information of contact with ground and
angle are Boolean values. Table 1 shows the function
and variable nodes used in the digital neural model. It
is necessary for all information from environment to be
expressed as Boolean value. For example, if the link i
is in contact and not in contact with the ground, Ci is
1 and 0, respectively. The range of angle that link can
rotate is separated into four parts and this information
is decoded to two bits that are contributed to A1

i and
A2

i .
The function "-" is used as the root of the tree of

digital neural model. This enables the digital neural
model to provide three values, 0, 1, and -1 as outputs.
The function "-" takes two arguments. First and sec-
ond values are E1 and E2 at the next time step, re-
spectively. Finally, when the output value is -1, 0, and
1, driving torque of the joint where the neural system
is located is -0.2, 0, and 0.2 Nm respectively.

(b) Analog neural model
Table 2 shows the function and variable nodes used

in the analog neural model, AA. The outputs of all
nodes vary from ��=2 to �=2. The function sig is a



Table 2: Nodes used in an analog neural model
Function nodes Number of argument

sig 4
sin 2
tan 2
not 1
if 3

Variable nodes Explanation
Ci Contact information of link i
Ai Angle information of joint i
N Constant
E Output before one time step

sigmoid function represented by,

sig(r) =
1

e�r + 1
(1)

where, r is the sum of four arguments. Second ar-
gument of sin is the phase. if is the function that
provides the second argument and third argument as
an output if the �rst argument is positive and nega-
tive, respectively. not multiplys the argument by -1.

If the total mass of the robot isM and the external
force to the link i is F , contact information Ci is given
by

Ci =
F�

Mg
�

�

2
(2)

Ai means the information of the angle of joint i. So,
if the angle of joint i can rotate from ��=3 to �=3, Ai

is de�ned by

Ai =
3

2
� (3)

Thus the output P of the analog neural model also
varies from ��=2 to �=2. Driving torque is de�ned by

� = 0:2P・
2

�
(4)

With this, the driving torque varies from -0.2 Nm to
0.2 Nm.

(c) Other models
For other models, ND, NA, DA and AD, descrip-

tions of the input or output are the same as DD and
AA models when the �rst or second character is the
same.

3 Method

3.1 Genetic Programming

Both the morphology of the body and neural sys-
tems are represented by one large tree structure as
shown in Fig. 3. The tree structures of the neural
systems are placed in each joint. One of the evolu-
tionary computations, GP is used to deal with this tree
structures including the information of both the mor-
phology of the body and neural systems, because GP
can handle the tree structures directly. Robots with
low-�tness are eliminated by selection. New robots
are produced using crossover and mutation in this

Body

Neural system Neural system

Fig. 3: Tree structure of the robot
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method. Then their morphology of the body and neu-
ral systems are generated from generation to genera-
tion and �nally converge to a reasonably optimal so-
lution.

3.2 Multi Optimal Problem

The design of the robot is taken as the multi opti-
mal problem, MOP, in which two evaluate functions
are considered. A distance of movement is often used
for emergence of the ability of moving robot. However
this evaluation function largely depends on the size of
the robot. So we de�ne one of the �tness as,

fmovability =
d

M
(5)

where, M is a mass of the robot and d is a moving
distance of the robot during eight-second simulation.
The e�ciency of movement is taken as a second eval-
uate function. The larger the sum of driving torque of
all joints of the robot is, the smaller the e�ciency is.
So as the second �tness,

fefficiency =
1

1 + �all
(6)

is de�ned, where, �all is the sum of driving torque
of all joints per a unit time step. Moreover, we use
the method that is combined with pareto preserving
strategy, vector evaluated GA and sharing as well.

3.3 Method in detail

The environment on which the robots move includes
the simple hill as shown in Fig. 4. Height of the hill,
h, changes randomly from generation to generation.
The range of h is from zero to 0.02 m. At �rst, the
center of mass of the root link is on the initial point.
Environment is just 
at from the initial point to the
point apart for 0.5 m from the initial point. Then, a
simple hill appears. Flat ground continues after the
hill. So the robots that can go through the 
at-hill-

at environment faster and more e�ciently can sur-
vive. Dynamic simulation is conducted to calculate
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(b) Analog neural model

Fig. 5: Pareto optimal solutions

the movement of the robots resulting from their in-
teraction with the environment. Equations of motion
of the robot are constructed using a Newton-Eular
method. One time step is 5 ms. Contact response
with ground of links is accomplished by a hybrid model
using both spring and damper under the in
uence of
friction and gravity. GP parameters used for the cal-
culation is as follows:

Population Size 200
Generation 300
Mutation Ratio 0.02

Note that the crossover ratio changes when the num-
ber of pareto optimal solutions changes from genera-
tion to generation.

4 Results

4.1 Digital neural model

Calculation using GP is conducted for the digital
neural model, DD. At �rst, all robots can move only a
little bit and the value of fmovability is low. Gradually,
the robots that can move e�ciently are emerged and
their moving distance increase. Finally, some robots
reach and overcome the hill. As shown in Fig. 5(a),
eleven pareto optimal solutions are emerged at gener-
ation 300. Six of them can overcome the hill of 0.02 m
height. As a preferred solution, the robot whose value
of fmovability is the largest among the six solutions is
selected.

The morphology of the body of the preferred solu-
tion of the digital neural model is shown in Fig. 6.
Joints are numbered as joint 1, 2, and 3 as shown in
Fig. 6. This robot mainly moves using joint 1 and
joint 3. The distance between the link 1 and ground,
and the driving torque of joint 1 are shown in Fig.
7. The negative and positive driving torque of joint 1
is generated when the root link is in contact and not
in contact with the ground, respectively. Similar phe-
nomena can be seen for the joint 3 and link 2. Note
that the locomotion pattern is generated not because
each neural systems can generate the rhythm but be-
cause the relationship between the neural systems and
environment works cooperatively. Figure 8 shows the
locomotion pattern of the robot and the angle of joints.
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Fig. 6: Morphology of preferred solution of digital neu-
ral model
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Fig. 7: Driving torque of the joint 1 and distance be-
tween the ground and link 1

The angle of each joint moves periodically when the
robot move on the 
at ground. The periodical locomo-
tion pattern changes when the robot moves on the hill.
When the environment returns to the 
at ground, the
locomotion pattern also returns to the periodical one.
The robot changes its length of step shorter to adapt
the change in the environment. Calculation is also
conducted when the environment is changed. Then
the robot can also move on the environment including
several hills whose width is inexperienced. This means
that both the morphology of body and neural systems
of the robot enable the robot to adapt the change in
environment.

4.2 Analog neural model

As shown in Fig. 5(b), �fteen pareto optimal so-
lutions are emerged for the analog neural model, AA,
at generation 300. The robots with the analog neu-
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of the link 2

ral model have much better �tness both on fmovability

and fefficiency than those of the digital neural one.
It means that the analog neural model can be more
adaptive toward the change in environment than the
digital neural model. It is because the analog neu-
ral model can exchange much information with the
environment than the digital one. Note that the ob-
tained morphology of the body having large �tness
lift their certain link by other links as mammals lift
their bodies by their limbs, whereas most results for
the digital neural model were creeping motion with-
out lifting their links as worms do. The result of this
study correspond to the fact that higher animals have
more complex neural systems.

Eight of the pareto optimal solutions can overcome
the hill of 0.02 m height. The robot whose value of
fmovability is the largest in the eight solutions is se-
lected as a preferred solution.

The morphology of the preferred solution of the
analog neural model is shown in Fig. 9. Joints are
numbered as shown in Fig. 9. This robot mainly
moves using joint 2. The relationship between the
driving torque of the joint 2 and the external force of
the link 2 from the ground is shown in Fig. 10. The

driving torque is decided according to the strength
of external force of link 2. Not only the informa-
tion of contact or no contact with the ground, but
the strength of the force from the ground which works
at the contact point of the link is obtained as an input
in the analog neural model. Similar to the digital neu-
ral model, this robot can move using information from
the environment in the neural systems. Fig. 11 shows
the locomotion pattern of this robot and the angle of
joints. Even through this robot has the simple mor-
phology, it can overcome the hill of 0.02 m heights.
When the robot reaches the hill, larger external force
works from the ground to the link 2 than that on the

at ground because the root link is lifted by the hill.
Then larger driving torque is generated to the joint
2 to overcome the hill. However the robot does not
change its periodical locomotion pattern so much as
that of the digital neural model when it moves on the
hill. Only the amplitude and period of the joint an-
gle are changed. This locomotion pattern of the robot
is similar to a walking motion of the higher animals.
The robot can adapt the change in the environment
by changing the strength of the driving torque of joint
2. This robot also can move on the environment in-
cluding several hills whose width is inexperienced as
the same as the robot with the digital neural model
can. The obtained simple three link morphology of
the body of the robot is similar to the robots by Doya
[8] and Kawachino [9] by chance. Emerged locomo-
tion pattern of these three studies are also similar.
It means that the morphology of the robots by Doya
and Kawachino are optimum. It also means that the
validity of our method is con�rmed because the gen-
erated morphology of the body and neural system and
the locomotion pattern is adequate even if the way of
expression of the robot is di�erent.

4.3 Other models

The pareto optimal solutions of other four models
at generation 300 are shown in Fig. 12. The robots
with NA and ND neural models cannot generate pat-
tern to move to a long distance. We can conclude
that information from the environment is important
to move. Movability of DA model is better than DD
model. However, they couldn't overcome the hill. We
can say that harmony of input/output is important.
Only the AD neural model can move and overcome
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the hill. We can say that the quantity of information
from the environment is more important than that of
output in order to adapt the change in the environ-
ment.

5 Discussions

The purpose of this study is to suggest a method
to design the morphology of the body and neural sys-
tems of the robots that can adapt the unknown envi-
ronment. Various combination of the morphology of
the body and neural systems of the robots are emerged
and they can move because the relationship between
the morphology and locomotion work cooperatively.
This means that it is e�ective for the robots to gener-
ate the morphology of the body and neural systems si-
multaneously. Especially, it is con�rmed that the ana-
log neural model is the most adaptive to the change in
the environment compared with other models. It is be-
cause the analog neural model can exchange much in-
formation from the environment than the other mod-
els. Simple link-type structure is only constructed and
the characteristic of the real motors is ignored in this
study to simplify the argument. If this study is ex-
panded to three dimensional robots considering char-
acteristics of motors and sensors, results will be more
practical. The three dimensional robots emerged us-
ing this method will be actually produced to con�rm
the e�ectiveness of this method in the future study.
The robots will be easily made and controlled because
they are composed of the parts that are easy to be

produced, controlled and adapted to environment.

6 Conclusions

A method for designing the morphology of the body
and neural systems of the link-type robots which gen-
erate the unique morphology and locomotion is sug-
gested. Various combinations of the morphology of the
body and neural systems that can move fast and ef-
�ciently are emerged. It is con�rmed that the robots
emerged in this method, especially the analog ones,
have adaptability to the inexperienced environment.
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