進行波型超音波モータの非線形動特性解析*

中川洋祐*1, 斉藤彰*2, 前野隆司*3

Non-linear Dynamic Analysis of Travelling-Wave-Type Ultrasonic Motors

Yosuke NAKAGAWA, Akira SAITO, Takashi MAENO

First, transient response of a bar-type ultrasonic motor is measured using laser-doppler-velocimeter in order to show the relationship between input parameters and the non-linear dynamic characteristics. Next, dynamical model of ultrasonic motor is constructed. The piezoelectric ceramics and stator's vibration are modeled as a second order system considering non-linear terms at piezoelectric ceramics and elastics of metal part of the stator. At the interface between the rotor and stator, three-dimensional discrete model using springs and dampers at the contact surface is introduced in order to calculate the friction force between them. Coulomb's friction model was introduced considering stick-slip at contact area. , As a result, the validity of the mathematical model was confirmed by showing that simulation results are in good agreement with those obtained by measurement.

Key Words :

Ultrasonic motor, dynamics, non-linear characteristics, contact analysis, stick-slip phenomenon, frictional loss

1. はじめに

超音波モータは、低速・高トルク、高応答性、高 保持トルク、静粛性などの特徴を有するアクチュエ ータであり、カメラのオートフォーカス・ズームや コピー機の駆動用アクチュエータとして実用化され ている⁽¹⁾⁽²⁾.特に、リング型超音波モータ、棒状超 音波モータなどの進行波型超音波モータは、品質の 安定性・信頼性が高いため、様々なタイプが実用化 されている.しかし、超音波モータの動特性は非線 形性が強くモデリングが困難なため、非定常駆動時 における駆動メカニズムの詳細は明らかにされてい ない.このため、動特性を考慮した制御法が確立し ておらず、高速・高精度な運動を実現するには至っ ていない.

超音波モータの駆動メカニズムは、圧電・振動変換と振動子・回転子間の接触変換に大別することができる。それぞれについて駆動モデルを構築する研究は、これまで数多く行われている^(3~6).これらの

*原稿受付 2006年9月8日.

*¹慶応義塾大学大学院(〒2238522 横浜市港北区日吉 3·14·1). *²ミシガン大学大学院(2277 G. G. Brown Building, 2350 Hayward St. Ann Arbor, MI 48109-2125, USA) *³正員,慶応義塾大学 E-mail: maeno@mech.keio.ac.jp

うち代表的なものを表1に示す。筆者らゆは、リン グ型超音波モータを対象に有限要素法を用いた接触 解析を行った. すなわち, 振動子・回転子間の接触 による非線形特性を考慮することによって、超音波 モータの定常回転時における駆動特性や摩擦損失を 計算している.しかし、振動子の圧電・振動変換、 振動子振動の非線形性および回転子の慣性を考慮し ておらず、超音波モータの過渡的な特性を明らかに できるものではない. Hagood ら⁶⁶は, 圧電・振動 変換および振動子・回転子間の接触変換を考慮して 超音波モータの動力学モデルを構築した.しかし, Hagood らのモデルは振動子振動の非線形性が考慮 されていないうえ、接触部モデルにおける固着・滑 り現象を考慮していないため、回転子を駆動する摩 擦力を正確に計算できない. このため, 接触部にお ける摩擦損失の評価が適切に行えない. また, 実験 結果との比較による妥当性の検証は定常駆動時に限 られている. Tsai ら⁽⁰⁾は, Hagood らと同様, 圧 電・振動変換および固着・滑りを考慮しない接触変 換をモデル化し,超音波モータの非定常特性を計算 した. Tsai らはある単一の条件下で非定常駆動時 の特性解析結果が実験結果とほぼ一致することを確 認しているものの、本報第3章で示すような振動 子の非線形性を考慮していないため、パラメータ変

	Piezoelectric conversion	Nonlinear Vibration	Consideration of stick-slip	Model of contact area	Dynamics	State
Maeno 92	×	×	0	Multi point	×	Steady
Hagood 95	\bigcirc	×	×	Multi point	\bigcirc	Steady
Tsai 03	0	×	×	Multi point	\bigcirc	Non-steady
Gutschmidt 04	×	×	0	Single point	\bigcirc	Steady
Proposed model	0	\bigcirc	\bigcirc	Multi point	\bigcirc	Non-steady

Table 1 Researches on modeling of ultrasonic motors

Fig. 1 Structure of a bar-type ultrasonic motor

Fig. 2 Vibration-mode of a bar-type ultrasonic motor

化に起因するモータ特性の非線形性を表現できると は考えられない. Gutschmidt ら^のは,接触部の固 着・滑り現象を考慮した接触変換モデルを用いて超 音波モータの動力学モデルを構築している.しかし, Gutschmidt らのモデルは接触を点接触に単純化し ている上,圧電素子における圧電変換がモデル化さ れていない.また,実験結果と計算結果の比較が定 常駆動時においてしか行われていない.このように, 振動子に電圧を印加してから回転子が回転するまで の機構,すなわち,圧電・振動変換と接触変換モデ ルを全て統一的にモデル化し,その妥当性を実験的 に検証した研究はこれまでに行われていなかった. 特に,振動子の非線形特性および接触による非線形 悭を考慮することによって,モータとしての非線形 駆動特性を明らかにした研究はなかった.

このため、本研究では、振動子振動の非線形性と

振動子・回転子間の接触による非線形性を考慮して, 圧電・振動変換と接触変換を網羅した超音波モータ の駆動モデルを構築するとともに,その妥当性を確 認することを目的とする.まず,超音波モータの過 渡応答の計測を行い,入力パラメータと過渡応答特 性の関係を明らかにする.次に,計測結果を考慮し て超音波モータの非線形動力学モデルを構築する. 最後に,計測結果と数値計算結果を比較し,本モデ ルによればモータの非線形動特性を定量的に解析で きることを示す.

2. 棒状超音波モータの構造と原理

本研究では、進行波型超音波モータの一種である キヤノン製棒状超音波モータ(9/10)を用いて研究を行 う.棒状超音波モータはカメラの AF 駆動用アクチ ュエータとして実用化されており、耐久性・信頼性 に優れる.棒状超音波モータの構造を図1に、駆 動原理を図 2 に示す.棒状超音波モータは振動子 と回転子より成る.棒状振動子にはドーナツ板状の 圧電素子が挟み込まれており, 回転子はばねにより 加圧され振動子と接触している. 圧電素子に, 振動 数が固有振動数に近い2相の交流電圧を印加する と、振動子には2つの相似形の固有振動モード (図 1(b)の曲げ1次モードと、紙面に直行した面内 の曲げ1次モード)が励振される. ここで2つの 振動の位相差を 90deg にすると、振動子には図 2 のような首振り運動が発生する. この時振動子の上 面は図 2 に示した楕円軌道を描いて振動している ため、振動子と接触する回転子は摩擦力を受けて回 転する. リング型超音波モータと同様, 接触点が時 間の経過とともに移動する進行波型の超音波モータ である.

3. 駆動特性の計測

棒状超音波モータの動特性を明らかにするために、 レーザ・ドップラ速度計(LDV)を用いて過渡応答 の測定を行った.発振器から増幅器を介して 1000 周期分の2相交流電圧をバースト状にモータに入力 することにより、モータを起動・停止させた. この 時の回転子の回転数および振動子の振動を, LDV によって計測した.計測結果を図3に示す.図3は, 印加電圧の周波数を 37kHz, 振幅を 15Vp-p, 位相差 を 90deg としたときの回転子および振動子の過渡応 答である.図3(a)は振動子の振動の法線方向速度, 図 3(b) は回転子の回転数の履歴を示している.図 (a)では 37kHzの振動の振幅変化が包絡線として見て 取れる. 圧電素子に電圧が印加されたときに振動子 に生じる超音波振動は、約3msで0.7m/sまで立ち上 がった後, うなりのような減衰振動を伴って約 0.6m/s に収束している. また, 回転子の回転数(b)も, 同様に、約4msで1560rpmまで立ち上がった後に減 衰振動を伴って約 1200mm に収束している.時刻約 27msにおいて入力電圧が 0V になると、振動子およ び回転子はほぼ直線的に減速し、振動子の振動は 30ms, 回転子の回転は 31ms で停止している. 以上 より、起動・停止時において回転子の回転数は振動 子振動包絡線にわずかな遅れを伴って追従している ことがわかる. このことは、超音波モータをダイレ クト駆動用アクチュエータとして用いるときの数 ms レベルでの高応答性を示すと同時に、超高速に

起動制御や追従制御を行う際にはうなり振動の改善 が必要であることを表している.

次に、印加電圧のパラメータを変化させて同様の

Fig. 3 Transient response of the rotor/stator

Fig. 4 Measured dynamic characteristics

Fig. 5 Mathematical model of ultrasonic motor

計測を行った.印加電圧の周波数を 36.5~37.5kHz, 振幅を 11~17Vp-p の間で変化させた.測定結果を 図 4 に示す(図中の電圧はピークトゥーピーク(pp)の値を示し,他の図も同様である).

図4(a)は、入力電圧の周波数と振幅を変えた際の 定常状態における回転子の回転数を示している.振 幅を一定に保った状態で駆動周波数を 37.5kHz から 低下させていったとき、回転数は徐々に増大した後、 ある周波数のときに急激に低下している.また、回 転数が最大値を取る周波数は、印加電圧振幅が大き いほど小さくなっている.これらは、4.5 節で述べ る振動子の漸軟ばね型非線形特性による共振周波数 の変化に起因すると考えられる.したがって、モー タのこのような非線形特性を解析モデルで再現する ためには、振動子の漸軟ばね型非線形特性を考慮し なければならないことがわかる.

図 4(b)に、モータ起動時における回転子の遅れ時間(入力開始から最大値に至るまでの時間)を示す. 遅れ時間も、定常回転数と同様に、モータの共振周 波数近傍で最大となっている.この値は、電圧振幅 が大きいほど大きくなっている.なお、測定値がプ ロットされていない点は、回転子が停止したことを 表す.もしもモータが線形特性を呈するなら、うな りに起因する遅れ時間は固有周期と加振周期の差に 比例するはずであるが、必ずしもそのようにはなっ ていなかった.このことからも、モータの非線形性 を考慮する必要があることがわかる.

図 4(c) には、モータ起動時における行き過ぎ量 (最大値と収束値の比)を示す.電圧振幅を一定に して周波数のみを変化させた場合、駆動周波数がモ ータの共振周波数に近づくと回転子の行き過ぎ量は 減少する傾向にあることがわかる.

図4(d)には、入力を停止してから回転子が停止す るまでの停止時間を示す.モータの停止に要する時 間は定常回転数と同様、印加電圧が大きいほど大き い.なお、図3に示したように、振動子・回転子は ほぼ直線的に減速するので、モータ停止時における 負の加速度は、駆動条件によらずほぼ一定であると 考えられる.

なお、図4に示した非線形性は、棒状超音波モー タのみならずリング型など他のタイプの超音波モー タでも生じる一般的現象であることが知られている.

4. モデル化

次に、棒状超音波モータの動力学モデルを構築し た. モデルの模式図を図5に示す. 本モデルは、振 動子モデル,接触部モデル,回転子モデルの3つよ り成る. 超音波モータの振動子は、実際には無限自 由度を持つ連続体であるが、支配的な振動は、駆動 に用いる直交した2つの曲げ振動1次モードの励振 に基づく振動子上部円盤の鉛直軸周りのニューテー ション運動であるので、本モデルでは、振動子の振 動を、剛体円盤とねじりばねおよびダンパから成る 3 自由度振動系に近似する. すなわち, 電圧が印加 された圧電素子のひずみにより生じる曲げ固有振動 モード (図 1(b)) を,図5のような,圧電素子のひ ずみにより生じた X (または Y) 軸周りのモーメン トに起因する振動子上部円盤のX(またはY)軸周 りの振動で表す.実際の振動子上面と図5のモデル における剛体円盤上面の振動振幅分布はよく一致し ている.

4.1 振動子モデル 振動子の振動を,圧電素子 に電圧が印加されてから圧電素子がモーメントを発 生するまでの圧電変換モデルと,圧電素子にモーメ ントが発生してから振動子に振動が発生するまでの 振動モデルに分割してモデル化する.圧電方程式に おいて,印加電圧の振幅と発生力は比例関係にある. ただし,圧電素子と振動子の金属はボルトにより圧 着されているため,両者の摺動による損失が生じる. 本研究では,振動子の振幅増大に伴って圧電素子と 金属の間の境界面において損失が発生することを考 慮し,圧電素子が振動子に与えるモーメント Mrzr を,

$$M_{PZT} = \frac{V}{\alpha_{PZT} + \beta_{PZT} A^2}$$
(1)

と定義する.式(1)において、Vは印加電圧、Aは振 動子の振幅, α_{PT} , β_{PT} は定数である. 式(1)は, 振 動子の振幅が増大すると,金属と圧電素子の間に損 失が生じて振動子に生じるモーメントが小さくなる ことを現している.なお、本現象のメカニズムの詳 細解明は今後の課題であるが、式(1)は、4.5節で述 べるように、実際の現象を精度よく表現できる実験 式である.

振動子の回転子との接触部を表す剛体円盤に設置 したねじりばねにおけるねじり角のと反モーメント M_E の関係は,

$$M_E = k\theta + d\theta^3 \tag{2}$$

のような3次式とした.3次の項は、振動子の漸軟ば ね型非線形特性を表現するための項である. 振動子 は、圧電素子からのモーメントおよび振動子の反モ ーメントのみならず、回転子との接触によって生じ る摩擦力および加圧力の影響を受ける. これらの点 を考慮し, Euler の運動方程式によって, 振動子の 運動を定式化した. 振動子の運動方程式は、

$$I\boldsymbol{\omega}_{s} + \boldsymbol{\omega}_{s} \times (I\boldsymbol{\omega}_{s}) = \boldsymbol{M}_{P} - \boldsymbol{M}_{E} - \boldsymbol{M}_{C} - \boldsymbol{M}_{D}$$
(3)

のように表せる. ここで、 I は振動子の慣性モーメン ト, $\boldsymbol{\omega}$ は振動子の角速度, M_P , M_E , M_C , M_D は, そ れぞれ、圧電素子からの力、振動子の剛性による反力、 接触部の摩擦力,粘性力によるモーメントである.

4.2 接触部モデル 振動する振動子に回転子が 接触すると、接触部には摩擦力が発生する.本研究 で提案するモデルでは、振動子上面の円周上に均等 配置した n 個の節点を介して摩擦力の伝達が行われ るような離散化(11)を行う. すなわち, 回転子の表面 に離散的に配置した 3 次元ばねおよびダンパの変 位によって摩擦力を表現する(図 5).各節点にお ける摩擦力が最大静止摩擦力を超えないときには、 その点で振動子と回転子が滑らずに接触していると みなす Coulomb の摩擦モデルを用いる. 各節点に おける最大静止摩擦力 fmaxⁱは,接触部の法線方向 反力を f_n^i ,静止摩擦係数を μ sとして

$$f_{max}{}^{i} = \mu_s f_n{}^{i} \tag{4}$$

によって計算する. 添え字 i は節点 i (i=1~n)を表す. 摩擦力が最大静止摩擦力に達する と、節点とばねの間に滑りが生じ、動摩擦力 fⁱ が 発生する.動摩擦力f_dは

$$f_d^{\ i} = sign(V_{rel}^{\ i}) \ \mu_s f_n^{\ i} \tag{5}$$

Fig. 6 Frequency characteristics of stator

により計算する. ここで、 V_{rel}ⁱ は各節点における振 動子・回転子間の相対速度である. 接触部に発生す る粘性力 f_{viscosity}ⁱは,

$$f_{viscositv}{}^{i} = c \ \Delta z^{i} \ V_{rel}{}^{i} \tag{6}$$

により計算する. Azⁱ は接触部ばねの法線方向変位 である. すなわち, 粘性力の振幅依存性を表してい る.

4.3 回転子モデル 接触部に生じた摩擦力の合 力によって回転子は駆動される.回転子の運動は回 転方向および鉛直方向の2自由度を有する.この ため,回転子の運動方程式を,ニュートンの並進お よび回転の運動方程式により表した.回転子の運動 方程式を式(7)(8)に示す.

$$I_r \omega_r + c_r \omega_r = \mathbf{M}_C \cdot \mathbf{e}_z - sign(\omega_r) \mathbf{M}_f$$

$$m z + c z = F + F$$
(8)

$$c_r z + c_r z = F_c + F_s \tag{8}$$

式(7)は回転子の回転に関する運動方程式であり、Lは 回転子の回転方向の慣性モーメント, crは回転子の粘 性係数, e,は z 方向の単位ベクトル, a,は回転子の角 速度, M_tは回転子がフランジから受ける一定の摩擦 力である.また、式(8)は回転子の鉛直方向の運動方程 式を示しており、 m_r は回転子の質量、 F_c は回転子が 接触部から受ける力,F。は回転子が加圧ばねから受け る力を示している.

4.4 解析の流れ 解析では、振動子のねじり角, 回転子の回転角,回転子の鉛直方向変位,回転子表 面のばねの変位, 圧電素子からのモーメントを変数 として扱う.また、接触部における接触状態(固着 または滑り)の履歴を求めるために収束演算を行う. すなわち,時刻 tでの状態が既知のとき,時刻 t+Δt (*∆t* は時間増分) での状態を求めるには、まず、 時刻 t における印加電圧を計算する.次に,時刻 t+∆t における接触部の固着・滑り・非接触分布が

Paramet	er Description	Value (unit)
Rs	Radius of stator	4.46×10 ³ (m)
R _r	Radius of rotor	5×10 ⁻³ (m)
$I_{x}I_{y}$	Inertia (x,y) of stator	2.6×10 ⁸ (kgm ²)
I_z	Inertia (z) of stator	$1.05 \times 10^{8} (\text{kgm}^{2})$
I_r	Inertia of rotor	2.26×10 ⁸ (kgm ²)
m _r	Mass of rotor	2.1×10^3 (kg)
k_x, k_y	stiffness (x, y) of stator	1.37×10 ³ (Nm/rad)
k_z	Stiffness (z) of stator	3.4×10 ⁴ (Nm/rad)
C_x, C_y	Damping (x, y) of stator	0.1422(Nm•s/rad)
C _z	Damping(z) of stator	0.4513(Nm•s/rad)
d	3rd order stiffness of stator	$-7.5 \times 10^{6} (N \cdot m/rad^{3})$
k_z	Vertical stiffness of rotor sprong	4.9×10 ⁴ (N/m)
k _r	Radial stiffness of rotor spring	4.3×10 ⁴ (N/m)
k_{w}	Rotor rotational stiffness	3.8×10 ⁵ (N/m)
C_3, C_r, C_{ψ}	Non-linear damping coefficient	$10^{-10}(N \cdot s/m^2)$
μ_s	Static coefficient of friction	0.5(-)
μ_d	Dynamic coefficient of friction	0.5(-)
0 (PZT	_	2.52×10 ² (V/N/m)
β_{PZT}	_	1.19×10 ⁶ (V/J ²)
C _r	Damping of rotor	10 ⁻¹⁰ (N•m•s/rad)
M_{f}	Constant of frictional torque	1×10 ⁴ (Nm)

Table 2	Parameter	used in t	he calo	culation
---------	-----------	-----------	---------	----------

時刻 tにおける状態と同じであると仮定し,その仮 定のもとで各接触点での摩擦力を計算する.計算し た摩擦力および $4.1 \sim 4.3$ 節で述べたモデルを用い て運動方程式を解き,時刻 $t+\Delta t$ における振動子・ 回転子の状態および接触点での接線方向力 f_t^i と法 線方向力 f_n^i を求める.ここで, Coulomb 摩擦モデ ルを用いて固着・滑り・非接触を判別し,各点にお ける接触状態を求める.接触状態が前回求めた値と 異なる場合は,接触状態を修正した後に再び時刻 $t+\Delta t$ のときの値を計算する.すべての点 iにおける 接触状態が前回の値と等しい時,時刻 $t+\Delta t$ におけ る収束解が得られたとみなす.この場合,時刻 $t+\Delta t$ における収束演算を終了し,次の時間ステッ プに進み,同様の計算を繰り返す.数値積分には 4 次の Runge-Kutta 法を用いた.

4.5 パラメータの決定 式(1)から(3)で示した振動子モデルのパラメータを決定するために、モータから回転子を外した状態で振動子の振動の計測を行った.印加電圧の周波数を35.5kHzから37.5kHzまで4秒かけて掃引し、振動子の振動振幅をLDVにより測定した.振動子モデルのパラメータは、振動子振動の周波数特性が実験値と一致するように設定した.決定したパラメータを用いて計算した周波数特性を測定結果とともに図6に示す.図6より、計算結果と測定結果は、漸軟ばね型非線形特性も含めてよく一致していることがわかる.なお、接触部における離散ばねの剛性は有限要素法を用いて決定

Fig. 7 Calculated and measured time history of transient response of the rotor

した.回転子のパラメータは、回転子の形状および 質量から計算した.決定したパラメータの値を表 2 に示す.

5. モデルの検証

構築したモデルを用いて、過渡応答の数値計算を 行った.計算では、計測時と同様に交流電圧をバー スト状に印加し、モータの起動・停止時における過 渡応答を計算した.なお、接触部の分割数 n は 256 とした.nの値は、これ以上値を大きくしても解が ほとんど変化しないような十分大きな値を選んだ. 時間ステップムt は 0.5µs とした. Δt の値は、これ以 上値を小さくしても解がほとんど変化しないような 十分小さな値を選んだ.

計算結果の一例を図 7(a)に示す. 図 7(a)は, 印加 電圧の振幅を 15Vpp, 位相差を 90deg として周波 数を変化させた場合の回転子の回転数の履歴である. 比較のために, 図 7(b) に計測結果を示す. 図 7 よ り, 起動・停止時における回転子の回転数変化の計 算結果は, 計測結果とよく一致した特性を呈してい ることがわかる. 特に, 回転子の定常回転数および 入力停止時から回転子停止時までの回転数の計算結

Fig. 8 Calculated dynamic characteristics

果は計測結果とほぼ一致している. 起動時の回転特 性を見ると、回転数過渡特性の特徴は一致している ものの、計算値と実験値には若干の違いが見られる. これより、振動子の非線形パラメータに調整の余地 が残されていると考えられる. この点は今後の課題 である.ただし、従来の他の研究では、図6に示し たような振動子の非線形性を考慮していなかったた め、振動子の振動振幅を変化させたときの回転子の 回転特性の計算値を実験値と一致させることは極め て困難であった.特に、周波数変化に伴ううなり挙 動の計算値を図7のように実験値とある程度一致さ せることは、線形モデルでは不可能であった.これ に対し、構築したモデルでは両者はある程度定量的 に一致している. このことから, 本モデルはモータ の過渡現象を従来の他のモデルよりも適切に表現で きているといえる.

次に、印加電圧を変化させて同様の計算を行い、駆動パラメータとモータの過渡状態における駆動特性の関係を計算した.計算結果を図8に示す.図8(a)~(d)に対応する解析結果を示す.図8と図4を比較すると、(a)のモータの定常回転数および(d)の停止時間はほぼ一致している.定常回転数が一致しているということは、振動子と回転子の

定常状態における相互作用が適切にモデル化されて いることを意味する.また、計算と実験におけるモ ータの停止時間が一致していることは、振動子・回 転子間の接触モデルの妥当性も示していると言える. (b)の遅れ時間および(c)の行き過ぎ量は定性的に一 致している. 定量的には必ずしも一致していない理 由は、回転子および接触部の粘性係数などのパラメ ータの非線形性を含めたモデル化に改善の余地が残 されているためと考えられる. また, 駆動周波数の わずかな変動に対して回転子の遅れ時間および行き 過ぎ量は大きく変動する.このため、粘性係数のわ ずかな誤差に対しても計算結果における誤差は大き くなってしまったものと考えられる.本研究で考慮 しなかった他の非線形性を考慮することによって両 者の定量的な一致を目指すことは今後の課題である. また、本研究では振動子の非線形性を実験式により 現したが、非線形現象の物理的意味を明らかにする ことも今後の課題である.

なお、振動子振動のあらゆる非線形性を考慮しない解析も行なった.この結果、図8のような左右非 対称な回転特性とは異なり、左右対称な回転数分布 を呈した.これは、3章でも述べたように、振動子 振動の漸軟ばね型非線形振動特性を考慮することの 必要性を表している.

また、振動子と回転子が点接触すると仮定した解析も行なった.この結果、左右非対称な回転数分布 は得られたものの、図 8 と図 4 は定量的に一致し なかった.これは、接触による非線形特性がモータ の特性に影響することを表している.

以上のように、振動子の非線形性および回転子と の接触に伴う摩擦力分布の振動子振動への影響とい うふたつの非線形因子を考慮している本研究の動力 学モデルは、これまで数値計算では十分に表せなか った超音波モータの非線形特性を表現できることを 確認した.特に、図 4(a)および図 8(a)に見られるよ うな、回転速度が最大となる周波数からわずかに周 波数を小さくした際の急激な回転速度の減少は、線 形モデルでは決して表現できなかった挙動である. 以上のように、本計算結果は、定常状態において計 測結果とほぼ一致するのみならず、動特性の特徴も よく一致している.動的挙動をさらに定量的に一致 させるためにはパラメータの最適化という課題が残 されており、この点は今後の課題である.

超音波モータは直流電磁モータ等と比べ,様々な 非線形性を有することが普及のためのひとつの足か せとなってきた.本解析手法を用いて,設計時に非 線形性を改善することや,非線形性を補償する制御 系を構築することは今後の課題である.

6. おわりに

本研究では、計測および数値計算を用いて進行波 型超音波モータの非線形過渡応答の解析を行った. はじめに、レーザ・ドップラ速度計を用いて超音波 モータの起動・停止時における過渡応答を計測し, 入力パラメータの影響を明らかにした.次に、モー タの非線形性を考慮した超音波モータの動力学モデ ルを構築した.さらに、計算結果と測定結果を比較 することにより、本モデルによって超音波モータの 非線形動特性を表現できることを確認した.

なお、本研究では棒状超音波モータを対象としたが、 本手法はリング型超音波モータや円筒型超音波モータ などの任意の進行波型超音波モータに容易に拡張する ことが可能な一般的な手法である.

謝辞 本研究の一部は、科研費特定領域研究「ブレ イクスルーを生み出す次世代アクチュエータ研究」 の援助により行われた.記して謝意を表する.

参考文献

- T. Sashida, T. Ashizawa et.al., Ultrasonic Motor, Japan AEM Journal, Vol. 8, No. 3 (2000), pp. 312-320.
- (2) Takashi Maeno, Ultrasonic Motor, Journal of Robotics Society of Japan, Vol. 21, No. 1 (2003), pp. 10-14.
- (3) Minoru Kurosawa and Sadayuki Ueha, Efficiency of Travelling-Wave-Type Ultrasonic Motors, Journal of Acoustical Society of Japan, Vol. 44, No. 1 (1988), pp. 40-46.
- (4) T. Maeno, T. Tsukimoto, and A.Miyake, Finite-Element Analysis of the Rotor/Stator Contact in a Ring-Type Ultrasonic Motor, IEEE Trans. Ultrason., Ferroelec, Freq. Contr., Vol. 39, No. 6 (1992), pp. 668-674.
- (5) N. W. Hagood IV, A. J. McFarland, Modeling of a Piezoelecric Rotary Ultrasonic Motor, IEEE Trans. Ultrason., Ferroelec., Freq. Contr., Vol. 42, No. 2 (1995), pp. 210-224.
- (6) M. Tsai, C. Lee, and S. Hwang, DynamicModeling and Analysis of a Bimodal Ultrasonic Motor, IEEE Trans.,Ultrason., Ferroelec., Freq., Contr., Vol.50, No.3 (2003), pp.245-256.
- (7) S. Gutschmidt, P. Hagedorn, Modeling the steady and unsteady operation of a piezo-electric bar type motor, Proc. Int., Conf., Acoust., (2004), pp.I405-I408.
- (8) P. Hagedorn, T. Sattel, D Speziari, J. Schmidt and G. Diana, The importance of rotor flexibility in ultrasonic traveling wave motors, Smart Mater. Struct. 7 (1998), pp.352-368.
- (9) I. Okumura, A Designing Method of a Bar-Type Ultrasonic Motor for Autofocus Lenses, Proc. IFToMM-jo International Symposium on Theory of Machines and Mechanisms, (1992), pp. 836-841.
- (10) Takashi Maeno, Recent Progress of Ultrasonic Motors, Proc. The First International Workshop on Ultrasonic Motors and Actuators, (2005), pp. 15-18.
- (11) Takashi Maeno, Contact Analysis of Traveling Wave type Ultrasonic Motor considering Stick/Slip Condition, Journal of Acoustical Society of Japan, Vol. 54, No. 4 (1998), pp. 305-311.