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Development of Ultrasonic Motors using Longitudinal and Bending Natural Vibration
for Multi-Degrees of Freedom Motion

Small and precise actuators for multi-degrees of freedom (DOF) motion is needed to construct a dexterous robot arms
and manipulators. Ultrasonic motors are suitable for the multi-DOF actuation of the robot arms and manipulators because
of its characteristics such as its output power per unit volume, high stationary limiting torque, high maximum operating
torque, simple design, silence, and high controllability. In this study we develop a three DOF ultrasonic motor. It is found
that the three DOF ultrasonic motor can be constructed when natural frequencies of two second bending modes and a first
longitudinal mode of a bar-shaped stator correspond. A spherical rotor in contact with the stator head rotates around three
perpendicular axes. Geometry and structure of the ultrasonic motor in detail is determined using finite element analysis.
Measured natural frequencies and natural modes of bending and longitudinal vibrations of the stator agree well with
calculated ones. The rotational speed of the spherical rotor around three perpendicular axes are measured.
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Fig. 1 Application of actuators with multi-degrees of freedom
Table 1 Classification of ultrasonic motors
degrees of shape of
freedom wave type stator modes references
1 traveling wave ring bending+bending [41.[5] [2]
1 traveling wave bar bending+bending [6],[71.[8] [3]
1 traveling wave plate bending+bending [9]
1 standing wave bar longitudinal+tortional [10]
1 standing wave plate bending+longitudinal [11]
1 standing wave hybrid  hybrid [12]
3 traveling wave ringx3  bending+bending 2]
3 unknown sphere  hybrid [3]
3 travel_lng Wavet par bendingx2+longitudinal  this study
standing wave
2.
2.1
Table 1
[13]
[5].[6].[7]
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Fig. 2 Natural modes of a column
(D =10mm, L =33.30mm)
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Fig. 4 Structure of a bar-shaped ultrasonic motor
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Fig. 7 Picture of a multi-DOF ultrasonic motor
Fig. 5 Natural modes of a bar-shaped multi-DOF stator
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