

Master’s Dissertation 2016

Navigation Digital Signage System based

on Interaction of Ultra High Definition

Display and Smartphone

ZULIN LIANG
（Student ID Number：81434711）

Supervisor Professor OGI Tetsuro

March 2016

Graduate School of System Design and Management,

Keio University

Major in System Design and Management

SUMMARY OF MASTER’S DISSERTATION

Student

Identification

Number

81434711

Name

ZULIN LIANG

Title

Navigation Digital Signage System based on Interaction of Ultra High Definition

Display and Smartphone

Abstract

Complex subway station usually has several floors and large numbers of exits.

Navigation system is important to help people solve wayfinding problem inside such

station. Navigation system is divided into path computation type and mapping guidance

type which we focused on this research. In this research, we proposed a new navigation

system which combined UHD (Ultra High Definition) display with personal smart

phone. Different from conventional 2D map system, 3 Dimensional Map is introduced

in our system and could be control by smartphone. This interaction obtains better user

control experience and help people understand construction structure more efficiently.

In this navigation system, gyroscope and scrolling gesture data from smartphone will

be transmitted to UHD display to control 3D map model. The 3D map model can be

rotated, zoomed in/out smoothly. Several UHD display and computers are combined

into UHD Digital Signage Subsystem, and integrated with groups of Smartphone

Subsystem. All the subsystems connect to a Central Server System in order to provide

Multi-to-Multi approach. The Multi-to-Multi Approach gain the possibility to serve

more people inside station, and hence satisfy mass requirement of wayfinding inside

complex subway station.

As a result, the system feasibility had been verified that all subsystems are robust, and

the integration of whole system worked reliably. The survey result and experiments

showed that whole system had been validated. As a conclusion floor structure was

understood by several users more efficiently.

Key Word(5 words)

Digital Signage, Ultra-High Definition, Smartphone, WebGL, WebSocket

Index

1 Introduction ... 8

1.1 Background ... 10

1.2 Wayfinding ... 16

1.3 Current System and their problems .. 18

1.4 Purpose of this Research .. 22

2 Proposed System ... 23

2.1 System Requirement Analysis .. 23

2.2 System Concept Development ... 28

2.3 System Overview .. 30

2.4 System Architecture .. 34

3 System Design Detail .. 38

3.1 Ultra-High Definition Display .. 38

3.2 Gyroscope Sensor ... 39

3.3 Scrolling for Zooming .. 42

3.4 Link from Smart Phone to Server ... 43

3.5 Process Inside Server .. 45

3.6 UHD Client, WebSocket and WebGL .. 46

3.7 Multi-Client Handling Method ... 49

4 Verification and Validation .. 54

4.1 Single Link Sub System Verification & Validation .. 54

4.2 Result of Single Link System Verification & Validation 58

4.3 Multi-to-Multi Approach Verification & Validation ... 61

4.4 Result and Discuss of Multi-to-Multi Approach Evaluation 67

5 Conclusion and Future Work ... 72

6 Acknowledgements ... 73

7 Bibliography .. 74

8 Appendix – A: Questionnaire .. 77

9 Appendix – B: Programming Code for Central Server ... 83

10 Appendix – C: Programming Code for Digital Signage ... 93

List of Figure

Figure 1: Imagination of Smart City (Urban Planning of Shibuya Station Area,

from Tokyu Corporation & East Japan Railway Company:

jreast.co.jp/e/press/2012/pdf/20130101.pdf).. 8

Figure 2: Shibuya Station three-dimensional map

(http://www.tokyometro.jp/station/shibuya/yardmap/) 9

Figure 3: Shinjuku Station map

(https://www.jreast.co.jp/estation/stations/866.html) 11

Figure 4: Shinjuku Station map (http://waral.club/tvmovie/20150214) 11

Figure 5: Yokohama Station map

(https://www.jreast.co.jp/estation/stations/1638.html) 12

Figure 6: Navigation Process .. 13

Figure 7: A vending machine used digital signage for providing service.

http://www.ad60.com/touch-screen-vending-machines-generation/............ 15

Figure 8: Recognition way-path of a human-being .. 17

Figure 9: Current Solution in Wayfinding Process ... 18

Figure 10: An example of Google Map .. 19

Figure 11: a 2D map example of Hiyoshi station (From Tokyu official website:

http://www.tokyu.co.jp/railway/station/yardmap/?id=13) 20

Figure 12: An example of Indicator .. 21

Figure 13: Current Navigation Method and their problem ... 22

Figure 14: Problems in Current System and Some Solutions. 23

Figure 15: Smartphone Users and Penetration in Japan. (From

http://www.emarketer.com/Article/Smartphone-Use-Japan-Makes-

Steady-Gains/1010226) .. 25

Figure 16: Smartphone users in Germany. (From

http://www.statista.com/statistics/461801/number-of-smartphone-users-

in-germany/) .. 26

Figure 17: Smartphone users in China. (From

http://www.statista.com/statistics/257045/smartphone-user-penetration-

in-china/) ... 27

Figure 18: The system requirement overview .. 28

Figure 19: The System Level Solution for Requirement .. 29

Figure 20: The system architecture prototype overview .. 31

Figure 21: Several users use single Navigation System at the same time. 31

Figure 22: System Design and Detail Design. .. 33

Figure 23: Deployment Diagram of the proposed system .. 35

Figure 24: The rotation axis and relationship of smartphone 39

Figure 25: The rotate axis of object (3D map) ... 40

Figure 26: Static 3D model example of Hiyoshi station. (From Tokyu official

website: http://www.tokyu.co.jp/railway/station/yardmap/?id=13)............. 47

Figure 27: Prototype of 3D station model in web page .. 47

Figure 28: Class Diagram of the proposed Multi-Client Handling Method 50

Figure 29: Stats.js Frame Rate Recorder. (In the left top area) 55

Figure 30: The interface of control App for smart phone ... 57

Figure 31: Frame Rate Result of Single Link Sub System ... 58

Figure 32: The average score of smoothness of motion ... 59

Figure 33: The percentage of most prefer rotation axis in SPCS 59

Figure 34: The average prefer rotation speed of camera and object 59

Figure 35: The real system of digital signage subsystem ... 62

Figure 36: The Frame Rate Result of Digital Signage. .. 67

Figure 37: The Satisfaction Result of Post Sign and Digital Signage. 68

Figure 38: The Smoothness and Access Speed Result of Digital Signage. 68

Figure 39: The Multi-to-Multi function validation result of Digital Signage. 71

8

1 Introduction

Digital Signage, Smartphone, UHD (Ultra High Definition) TV, and Navigation System

make our life colorful and better. Combining these several devices and their sensors to

solve real world problem is also a hot issue in terms of (Internet of Thing) IoT and System

Engineering. Image you can use your own Smartphone interact with Digital Signage

inside a smart city, some researches already showed the future of urban life [1]. IoT helps

to build the concept and System Engineering helps to achieve that. Figure 1 showed the

possible future life in smart urban area.

Figure 1: Imagination of Smart City (Urban Planning of Shibuya Station Area, from

Tokyu Corporation & East Japan Railway Company:

jreast.co.jp/e/press/2012/pdf/20130101.pdf)

9

As a smart city, the urban traffic system must be able to carry heavily daily transportation.

Hence, as an interchange point, complex subway station is built to integrate multiple

subway lines and link certain commercial areas together. Complex subway station usually

has several floors and large numbers of exits. Inside such station, the wayfinding issue

could be a problem for new visitors. Figure 2 shows the example of complexity of

Shibuya Station in Tokyo, Japan.

Figure 2: Shibuya Station three-dimensional map

(http://www.tokyometro.jp/station/shibuya/yardmap/)

Navigation system is an integrated system which is designed to help people solve

wayfinding problem. It is divided into path computation type and mapping guidance type

which we focused on this research.

In this paper, we proposed a novel navigation system which combined UHD (Ultra High

10

Definition) display with personal smart phone, in order to obtain better user experience

and help people understand construction structure more efficiently.

In this paper, the background of this research will be stated. Some literature review will

be done to give a glance in the problem (Section 1.2), theory (Section 1.2), solution

(Section 1.3), and all the device (Section 0, 0) involve in our system.

1.1 Background

The world changed so fast, and the Tokyo Olympic doesn’t seem like a far future. Large

amount of people are expected to visit Japan in 2020 Olympic game. As the introduction

in section 1, with the benefit of interchange construction structure, multiple subway lines

can interact each other to provide convenient transfer experience. However, this

convenience can only be enjoyed by people who are familiar with complex station

structure. People find it difficult to find path quickly inside complex station such as

Yokohama, Shibuya, Shinjuku, and Tokyo, etc. Below shows some example of

complexity:

11

Figure 3: Shinjuku Station map (https://www.jreast.co.jp/estation/stations/866.html)

Figure 4: Shinjuku Station map (http://waral.club/tvmovie/20150214)

12

Figure 5: Yokohama Station map (https://www.jreast.co.jp/estation/stations/1638.html)

Complexity makes people confuse about station structure. They don’t know how to go

from one platform to another, where to find the exits and which stair or elevator to take.

All these are wayfinding problem. Wayfinding problem is not a new issue, but it still

remains when there are so many nowadays advance technology. With Google Maps, GPS,

Internet, Smartphone and so many high-tech knowledge device, these problem still occurs,

there must be some detail issue haven’t been analysis.

1.1.1 Navigation System

Navigation system is usually designed to reduce the recognition cost for wayfinding. The

system goes through the data of nodes, links and other informations which abstracted

13

from the real world, calculates the best way to destination, and gives some advice to users

depends on their current location.

Figure 6: Navigation Process

As Navigation Process showed as Figure 6, Navigation system uses GPS, wireless

network or the location of system itself to define the original position, receives

information from user by voice or text. After that, the system uses build-in map or online

map to detect the best way to desire destination. In terms of hardware, there are portable

device, digital signage and voice device, etc. Navigation System is an aggregate concept

of devices and location.

Current portable navigation system usually required user to stare at small screen

frequency. The location signal which provided by GPS or cellular base station has high

probability to be blocked in a closed building environment, especially inside subway

station. Some solution use QR code to provide stable location information and avoid

signal interference, but it doesn’t seem like convenient for users since it requires to open

Locationing

•GPS

•Wireless
Network

•Itself

Mapping

•Built-In Map

•Online Map

Wayfinding

14

camera and scan the QR code. Voice devices are usually used in car navigation where

driver needs to focus on the roads and could not pay attention to any screen.

There are also large type of navigation system which used digital signage as terminal in

order to provide mapping information to end users. Some researches showed that this

kind of navigation system had some advantage in campus navigating [2] and autonomous

robots navigating [3]. In digital signage navigation system, the locationing is done by the

system position itself. The mapping is either by calculating the road in users or inside the

signage system.

1.1.2 Digital Signage

In this research, we tried to combine the benefit of digital signage and smart phone, and

especially used Ultra-High Definition display and new web technology like WebSocket

and WebGL to develop a new navigation system.

Digital Signage has evolved continuously over the years, and it has showed the potential

in application of navigation recently. Comparing to conventional usage of advertisement

and broadcasting, the interacting with digital signage has gained great interest for

researchers due to hot issue of Internet of Thing. In these days, the ubiquity of smart

phone and the development of sensor make it possible to apply more intuitive interaction

with digital signage. There are widely research on Digital Signage interaction with

portable devices [4], [5], [6], [7], [8], [9]. Most of them focus on linking method and

interaction method in technique detail.

Digital Signage is an evolution device to broadcast contents instead of traditional static

posters. It is widely used in airport (show airline information), exhibition hall (show

exhibition info), shopping mall (show advertisement) and so on. Recently it is also famous

in vending machine, showed as Figure 7, which adds enjoyment to shopping experience.

15

Compare to traditional static demonstrate method, digital signage uses electric screen and

information system to maintain and update the data. It reduces the cost of labor and

always keep fresh data which is quite important nowadays. Digital signage has been tested

the possibility as a navigation system for human [2] as well as robot [3]. The interaction

between smart device and digital signage has shown better advertisement effect [10].

The interchange subway station provide convenient travel experience among city.

Helping people to understand construction structure and find correct path is an essential

issue of efficient urban traffic.

Figure 7: A vending machine used digital signage for providing service.

http://www.ad60.com/touch-screen-vending-machines-generation/

Interaction with digital signage gained large among of requirement these years, and one-

to-one interaction seems to be difficult to satisfy the requirement. Hence, with the

research development, one-to-many interaction had been developed to multicast contents

[11]. And Many-to-many interaction has also been developed [12].

16

Different from multicasting method, in this paper, we proposed a TCP/IP based multi

interaction for UHD Navigation Signage System, in order to provide more personal

control experience while several persons try to use this system at several place inside

station. Traditional server design used a main loop to handle all client problem. In this

research, we used listener and handler to connect smartphone link and digital signage

together in order to fully use the multi-thread system and increase connection speed. This

proposed system deals with wayfinding problem inside complex interchange subway

station, and try to give a multi service result to fit all the users’ requirement.

1.2 Wayfinding

As introduction at previous section, wayfinding could be a problem inside complex

subway station. This problem usually occurs in new visitors who are not familiar with the

station structure.

Due to the differential services, wayfinding problem becomes a big issue for not only

visitors but also researchers. “Wayfinding is a dynamic affair” [13]. As a cognition

process, in this paper, we describe the problem and essential solution as below.

When human-being recognize way-path, it is a continuous task and the task will be

renewed moment by moment. Firstly he or she should understand the original point and

the destination (E.g. I am in Hiyoshi and I want to go to Akihabara). Then they try to

understand the abstract way-path by dividing in several parts (E.g. from Hiyoshi station

to Shibuya Station, then from Shibuya station to Akihabara Station). After that, they will

try to find out the detail path (E.g. which exchange exit they should take, inside the station

whether they should go upstairs or not). This process is showed as Figure 8.

17

Figure 8: Recognition way-path of a human-being

Wayfinding is also a continuously subdivided-integration process. People will subdivide

the way into different parts depend on the cognition requirement. If one person want to

go to one platform, for example, he will try to find out whether it is the same floor or not.

That is, he or she is going to subdivide the station into floors and stairs. If it is the same,

then he or she will continuously consider which road to select. If it is not, he or she will

try to find out how many floors they should climb up and whether to take an elevator or

a stair.

On the other hand, some station structures seem to be complex but the cognition map

inside human could be simple, then people would like to integrate the way in a simpler

structure. For example, if all the stair and elevator can help people to reach any floor of

the structure, then it is no necessary to remember “which stair or elevator to take”. People

tend to remember the action by integrating different choices into a simpler action. Another

example is, if there are 6 or 7 or more stairs in front of a person, but only the biggest stair

allows people to reach the 4th floor directly, then people usually tends to remember the

road by the key word “Biggest” other than “the first stair in from of me” or “the stair

between red and blue one”.

Understand

Destination

Understand

Abstract Path

Understand

Detail Path

18

1.3 Current System and their problems

As introduction in section 1, this research mainly focus on wayfinding problem inside

complex subway station. The question focus on new visitors who are newly come to

complex subway station. As the example showed in previous section, the complexity here

could means several floors, hundreds of elevators, stairs and exits.

Figure 9: Current Solution in Wayfinding Process

As showed in Figure 9, we state the common process when people deal with wayfinding

problem by using current system. When people find a road, he or she needs to firstly

understand the original position and destination (I am at Shibuya and I want to go to

Akihabara), and that can be solved mainly by guidance book or the advice from tour guide.

The understanding of abstract way-path can be solved mainly by the Network-based

software or Apps like Google Map (showed as Figure 10) and etc. When inside station,

these app lack of floor information. The understanding of detail path is supposed to be

solved by signage, 2D poster map, indicator and staff inside the station, but they are not

Understand

Destination

•Guidance Book

•Tour Guide

Understand Abstract

Path

•Network-Based App

Understand Detail Path

•Signage

•2D Poster

• Indicator

•Staff

19

as effective as they are expected.

Hence, in this research, we mainly focus on wayfinding problem inside complex subway

station.

Figure 10: An example of Google Map

20

Figure 11: a 2D map example of Hiyoshi station (From Tokyu official website:

http://www.tokyu.co.jp/railway/station/yardmap/?id=13)

2D poster map, an example showed as Figure 11, is a static map system. It shows the area,

important point liked entrance, exit, coin locker and so on. It cannot give enough floor

information which is important when coped with wayfinding problem inside interchange

subway station.

Indicator (showed as Figure 12) is usually designed as a big arrow with several words to

describe direction and the name of that destination. The staffs inside subway station

usually use their own language and have lots of other works which are important for

maintaining the subway station. When deal with large number of people, the service is

difficult to satisfy all the requests.

21

Figure 12: An example of Indicator

In term of floor information, 3D model is a kind of solution. Setup some entity model

inside the station is also a good way. Nowadays, 3D printer makes it possible to develop

and build complex model quickly. But as we put the 3D entity model inside station, it still

occupies lots of space inside station.

Therefore, designing a new navigation system to solve all these problem together is

important. Occasionally some emergency situation happen, it is also required in

navigation system to refresh the information quickly. In order to help people understand

the path more easily, the navigation system should also give the whole picture of

construction structure.

22

In conclusion, Figure 13 shows the deficiency of current system, or said, navigation

method.

Figure 13: Current Navigation Method and their problem

1.4 Purpose of this Research

In order to solve these wayfinding problem, in this paper, we try to use the proposed

system to help users understand the subdivided-integration progress continuously. People

from platform A to B, will go through many stairs, branching roads and gates. In this

continuous choose-select process, at every essential point, the digital signage, which is a

part of our subsystem, will help them to make decision quickly by giving 3D structure.

And the multi-to-multi approach helps serve several users at the same time.

The target user is defined as the person who firstly comes to a complex interchange

subway station. We are looking forward to a new navigation system which could solve

this wayfinding problem under this kind of target user.

Current Navigation Method

Signage

Lack of whole
image of
station

Cannot refresh

2D-map

Lack of floor
info.

Cannot refresh

Staff inside the
station

Difficult to
satisfy all
people

Lack of whole
image of
station

Lack of floor
info.

Network-based
Apps

Lack of floor
info.

Need Mobile
Network

Entity Model

Occupy Space

Cannot refresh

23

2 Proposed System

2.1 System Requirement Analysis

In this section, we try to analysis the system requirement based on end user which are

mention in section 1.3. In this research, we mainly focus on wayfinding problem inside

complex subway station. The question focus on new visitors who are newly come to

complex subway station. In section 1.3, we analysis the current system problem, and each

system’s problem is collected and showed as Figure 13. Here we list out the problem in

center as Figure 14.

Figure 14: Problems in Current System and Some Solutions.

We analysis the problem and find out some sub-solution for each sub-problem.

Lack of whole image of station is mainly caused by small screen or small media device

which whole station structure seems to be difficult to show in that kind of device. This

problem can be solved by using big signage system.

Lack of floor information is caused mainly because using traditional 2-Dimemsion Map

system. As the 2D image is the projection of 3D model, the complex 3D model could be

Lack of
whole image

of station

Lack of floor
info.

Need Mobile
Network

Difficult to
satisfy all

people

Cannot
refresh

Electric
Device

Big
Signage

3-
Dimension

Map

Bluetooth
& Local
Wi-Fi

Big
Signage

Customize
Service

Enough
Resolution

Occupy
Space

Flat
System

24

difficult to understand since 2D map is only from one viewpoint to look at that 3D model.

From the top view is difficult to get floor information, and from left or front view is

difficult to get plan metric information. From the Questionnaire 1 (listed in Appendix)

which we did, many of subjects (Record Conclusion in Appendix) who took this survey

answered that they preferred 3-Dimemsion Map instead of 2D Map. Hence using 3D Map

is a better solution. On the other hand, in order to display complex 3D model while

remaining enough structure detail, the end user device show also have enough resolution

on their screen. In conclusion, lack of floor information can be solved by using 3D Map

and big resolution screen.

Cannot refresh, or said, lack or real time information, is a shortness of traditional static

media (Post Map, Indicator and etc.). When applied electric devices which are easier to

access network could solve this problem.

The problem of occupy space usually happens when applied big entity system inside

narrow space. As the developing of digital signage, the screen of digital signage become

thinner and thinner which makes it possible to applied flat system attach to the wall in

order to make less space usage.

The problem of satisfy all people inside station is usually caused when lack of system

capacity and coverage. On the one hand, because of personality of customers, they tend

to use their own language and use the system in their own way. On the other hand, there

should be enough terminal in this system for users to use. The problem can be solved by

applying big signage (many people can use it at the same time) and customize service

(each user can use it by their own way).

The problem of requirement of mobile network usually happens when tried to use network

based app or software inside underground subway station. It could also happens when

visitors try to visit a new place without apply network from local telecom operators (AU,

25

Docomo and Softbank etc.). It could also happen when enter low signal strength place

where lack of GPS signal that is important in locationing.

In this research, the navigation system is designed for new visitors who come to complex

interchange subway station deal with wayfinding problem. Hence, analysis of these target

users is also important. From the marketing research below (showed as Figure 15, Figure

16, Figure 17), there is high possibility that end user tends to bring their smartphone while

newly coming to subway station. They could use build-in app to solve their wayfinding

problem, but the interesting thing is many of them are not satisfy with the current system.

Figure 15: Smartphone Users and Penetration in Japan. (From

http://www.emarketer.com/Article/Smartphone-Use-Japan-Makes-Steady-

Gains/1010226)

26

Figure 16: Smartphone users in Germany. (From

http://www.statista.com/statistics/461801/number-of-smartphone-users-in-germany/)

27

Figure 17: Smartphone users in China. (From

http://www.statista.com/statistics/257045/smartphone-user-penetration-in-china/)

With these large amount of smartphone users, nowadays portable navigation app doesn’t

seem to be difficult to cover end users. The wayfinding problem still occurs because some

inherent defect of existing system. The visitors require more advance system which could

solve the problem quickly and easily.

By analysis the whole system requirement and target users’ requirement, we found out

that single improvement approach is difficult to achieve the wayfinding goal and could

not satisfy target user. Changing another way, could all the small solution for sub problem

combining together become a new system to solve the wayfinding problem?

28

Hence we list out all the current system problem together and target users’ requirement

here, showed as Figure 18.

Figure 18: The system requirement overview

Target users want to solve wayfinding problem, and the current system they used has

several shortage. Problem solving could be two approach, one is to find a new method to

solve the problem, and another is try to improve the existing solution. Problem could be

divided into several small problem, on the other hand, several small solutions can also be

integrated into final solution. Hence, in Figure 18, we combine all the sub-solution from

Figure 14. They are 3D Map, Big Signage, Flat System, Enough Resolution, Electric

Screen, Bluetooth & Local Wi-Fi and Customize Service. All the sub-solutions integrated

together would be the final solution which target users wanted. In further, we could call

this the system requirement, the system required to have these sub-solution to fit the target

user’s requirement.

2.2 System Concept Development

In Section 2.1, we analysed the system requirement. In this Section, we try to develop

system concept over this system requirement. As we mention in Section 0, the navigation

system is an effective system to solve wayfinding problem. Considering flat system and

big signage requirement, the digital signage, which is thin and flat, is naturally considered

Requirement

29

to be involved into our system. Some researches showed that it is efficient to apply digital

signage to deal with wayfinding problem [2], [3]. Digital signage generally include a

screen system. Recently researches show the power usage of Ultra-High Definition

Display (or said 4K) in digital signage [14], [15]. In Figure 15, Figure 16 and Figure 17,

the increasing market for smartphone make it possible to combine this kind of ubiquitous

portable device into our system. Hence, by analysing these device and comparing their

function with our system requirement, the main device choices could be follow, showed

as Figure 19.

Figure 19: The System Level Solution for Requirement

In Figure 19, a novel concept of Navigation System has been showed. The UHD TV

(Ultra-High Definition Television) has the capacity with big screen, flat system and

enough resolution. Detail specification for UHD TV will be introduced in Section 3.1.

The Smartphone supports Bluetooth & Wi-Fi at the same time. Even without Internet, we

can use local network to satisfy these system requirement. Combining UHD TV and

Smartphone together could lead to better solution result. User could use Smartphone to

interact with UHD TV, try to get more information which is essential to the wayfinding

Requirement

30

process. System could also provide real time information to end user. Base on this concept,

we develop this system more specific in next Section.

2.3 System Overview

In this section, we proposed a new navigation system trying to help solve wayfinding

problem inside the complex subway station. Base on the concept we develop in Section

2.2, the system including UHD TV and Smartphone which we could called them

subsystem. In a more general way, we use UHD Display to represent all the UHD TV.

The user will use Smartphone to interact our system.

The system architecture prototype overview is shown as Figure 20. There will be several

users and several UHD displays. Each user can use a Smartphone to interact with a UHD

display in this navigation system. The data transmission is done by local network system.

All the data will go through a central server. Inside the central server, there is a database

which provide necessary information for Smartphone and UHD Display. The Station 3D

model will also install in the server.

31

Figure 20: The system architecture prototype overview

Figure 21: Several users use single Navigation System at the same time.

32

As Figure 21, the system allowed several users to interact with the 3D-map of station

structure through smart phone and UHD display. The interaction data will be transmitted

and collected by a navigation server. The data will be delivered to the target UHD client

in order to control the contents inside screen. In this research, we designed 1 main screen

and 3 sub screens for each digital signage sub system.

For prototype design of this system, there will be a numbers of UHD display as digital

signage inside station at every essential position. These positions can be the exits, the

place near stairs, and the entrance where people usually trend to make decision. Instead

of looking at a small screen only, users interact with this system to find out where they

are, where they should go, and how to go there.

The system uses the benefit of web technology like WebGL and WebSocket which

expected to reduce development cost and time. And the system also uses gyroscope sensor

and touch screen of the smart phone to capture user’s hand gesture, in order to give user

a better control feeling.

The whole system design overview is showed as Figure 22. The system design overview

lists out all the design from abstract level to detail level.

33

Figure 22: System Design and Detail Design.

SpecificationDetail

Component
Design,

Implementation
and Test

System
Specification
and Design

System Design

Navigation
System

Smart Phone
SubSystem

Smart Phone
Device

Samsung
Galaxy Note

Edge

Android 5.0.1

Gyroscope
Sensor

WiFi

UHD
Subsystem

UHD Display
Sony KD-
55X8500A

HDMI 2.0

Client
Computer

Dell Graph
Station

CentOS 7

DisplayPort
2.0

LAN

Server
Subsystem

Server
Computer

Dell Server

CentOS 7

LAN

34

2.4 System Architecture

In this section, we transform our system design into system architecture level. Our

proposed system combines several subsystem, showed as Figure 23. They are

Smartphone subsystems, Digital Signage subsystems and a Central Server. Central Server

is responsible for information collection and distribution. Digital Signage subsystems

contains a UHD (Ultra-High Definition) display, a BLE Beacon and a client computer.

The Smartphone subsystems require the Smartphone has Wi-Fi support, BLE support and

gyroscope sensor. The Network environment inside these system is made by applying

switch, router and Wi-Fi access point. The client computer and Central Server is accessed

to Network by LAN cable. The Smartphone is accessed to Network by Wi-Fi. The BLE

Beacon will transmit Bluetooth Low Energy signal for Smartphone to detect the distance

between Digital Signage and user.

35

Figure 23: Deployment Diagram of the proposed system

36

For software implementation, inside smartphone subsystem, each smartphone will be

installed an Android APK called ContralApp which is developed for collecting sensor

data and managing data sending-receiving task. Inside Central Server, there is an

executive server application called Server which is programmed in Java. Inside digital

signage subsystem, the client PC will open a webpage called Client which is made by

HTML 5 with WebSocket and WebGL to show the content of station model.

The Figure 23 shows two smartphone subsystem and two digital signage subsystem.

There is one interact example of smartphone subsystem 1 with digital signage subsystem

1 and 2. Firstly, the Central Server will start listen the client. Then, several Digital Signage

inside station will apply connection to Central Server. The Central Server will provide

each connection a thread to handle. Each Digital Signage has its own identity code which

registered in Central Server. When Smartphone receives remote BLE signal, it will send

the identity code that provided by this signal. As Figure 23, smartphone subsystem 1

receives 2 BLE signal, one is from digital signage subsystem 1 and another is from digital

signage subsystem 2. Assume that digital signage subsystem 1 is closer to user, the BLE

signal strength is stronger, and then the smartphone will try to send this closest BLE

identity code to the server. The Central Server receive that signal and try to combine the

correct connect path for Smartphone and Digital Signage. After the connect path has been

established, the user could choose whether to control or not.

If user chooses to control this digital signage subsystem 1, then inside the server, the

smartphone will be put in waiting list. If any of 3 sub screens is available, the available

sub screen will be reserved for smartphone subsystem 1. The sensor data, showed as Table

1, collected from smartphone will be transmitted to server and then delivered to

destination digital signage subsystem 1. The data, showed as Table 2, include information

that is used to indicate which sub screen to control will be packed with WebSocket header

37

and sent. After that, digital signage subsystem 1 unpacked data and apply motion data to

certain sub screen with WebGL Three.js library.

Table 1. The data from Smartphone to Central Server.

Gyroscope X Gyroscope Y Scrolling UUID

Double Double Double String

Table 2. The data from Central Server to Digital Signage Subsystem.

Sub Screen Gyroscope X Gyroscope Y Scrolling

Short Double Double Double

38

3 System Design Detail

In previous Section 2, we developed the system concept of Navigation Digital Signage

System. In this Section, the system design detail will be discussed and implemented. The

system is combined by different components, and each component has its own function.

All the function integrates together into a whole system.

The interaction is an original feature of the proposed system. In order to provide

interaction feature, we used smart phone’s gyroscope sensor and touch screen to collect

user’s gesture data, and transmitted it to the navigation server. After that, the navigation

server analyses the data and transforms it into WebSocket data form, and finally transmits

this WebSocket package to the UHD display client.

3.1 Ultra-High Definition Display

The Ultra-High Definition display, or 4k display, gains large demand nowadays. The

application of 4K TV has been described in a positive prospects [16], and the application

of UHD display for scientific and social problem solving is expected to grow. This kind

of display provides 4 times resolution than Full-HD display. In such screen, more lines of

text and details can be provided to user. The best viewing distance to enjoy 4K screen is

around 1.5H (1.5 times of 4K screen’s height) according to the NHK researchers [17].

In this research, we choose Sony KD-55X8500A TV as our UHD-display. The screen

height is 74.0 cm and the best viewing distance is 111.0 cm. The resolution of this UHD

display is 3840×2160 pixels. The display signal is transmitted from computer through

HDMI cable. With HDMI 2.0 and NVIDIA graphic card, the display signal could be

transmitted in 2160p 60fps format.

39

3.2 Gyroscope Sensor

The gyroscope sensor is a device which can provide rotation information around three

axis (x, y and z, which are orthogonal to each other). With the technology developing,

gyroscope sensor is small enough to be integrated as a single chip in many smart phone.

The rotation information provided by gyroscope sensor is measured in rad/s. The

direction of rotation follow the right-hand rule, for example, if we rotate the smart phone

through x-axis by counter-clockwise direction, then the gyroscope sensor will give a

positive value. Otherwise, it will give negative value.

For smart phone device in this research, the 3 rotation axis is shown as Figure 24. The z-

axis vector starts from the backside of smart phone, towards to the screen side. The y-axis

starts from the center, towards to the top of smart phone. And the x-axis starts from the

center, towards to the right side. The rotation relationship is also shown as Figure 24.

Figure 24: The rotation axis and relationship of smartphone

40

Figure 25: The rotate axis of object (3D map)

Inside the UHD display, the 3D object and the relationship with camera is shown as Figure

25. We also use a 3-dimension coordinate system to describe rotation relationship. In

Figure 25, the object is represented as a wired cube in the center. In real application, this

cube will be replaced to subway station map. The camera is put in Y-Z plane and will be

rotated around x axis (path is shown as path circle in green color). The center of path

circle is at the same position of coordinate system center, and the radius of path circle is

measure as value r. The camera’s viewpoint is from point C towards to circle center. The

head of camera always towards to the top, as the same vector as positive Z-axis direction

(0, 0, 1).

41

Because two coordinate systems are different, we describe the motion separately. The

coordinate system inside smart phone, which designed by google, is described as SPCS

(Smart Phone 3-Dimensional Coordinate System). The coordinate system in UHD display

is described as OCS (Object 3-Dimensional Coordinate System).

In smart phone, shown as Figure 24, the rotation data of y-axis, z-axis and x-axis will be

used as rotation control. When smart phone is rotated around y-axis or z-axis in SPCS,

the object will be rotated upon z-axis in OCS. For which axis to rotate in SPCS as control

data, we allow user to choose as they like. When smart phone is rotated around x-axis in

SPCS, the camera C will be rotated around x-axis in OCS.

In conclusion, in smart phone, in order to avoid mis-operation, only 2 axis are allowed to

be rotated around. As a result, in SPCS, either x-axis and y-axis, or x-axis and z-axis are

used to control the object and camera. In OCS, the object is rotated around z-axis, and the

camera is rotated around x-axis.

As implementation, in this research, we choose Android Smartphone as our experiment

device. The App inside Smartphone is developed in Java programming language. The

following code is the essential code for acquiring sensor data from Smartphone:

final SensorEventListener myAccelerometerListener2 = new

SensorEventListener() {

 //gyroscope

 @Override

 public void onSensorChanged(SensorEvent sensorEvent) {

 if(sensorEvent.sensor.getType() == Sensor.TYPE_GYROSCOPE){

 gypoX=sensorEvent.values[0];

 gypoY=sensorEvent.values[1];

 gypoZ=sensorEvent.values[2];

 DecimalFormat df = new DecimalFormat("######0.0000");

 tmp2="¥n¥n" + "x:" + df.format(sensorEvent.values[0]) + " ¥ny:"

+ df.format(sensorEvent.values[1]) + " ¥nz:" +

df.format(sensorEvent.values[2]);

 }

 }

 @Override

 public void onAccuracyChanged(Sensor sensor, int accuracy) {

 }

 };

42

The 3 axis rotation data will be saved into Double Type value gypoX, gypoY, gypoZ.

After exiting the app, the program will destroy the registration for sensor in order to

saving power for Smartphone. The destroy code:

public void onDestroy(){

 sensorManager.unregisterListener(myAccelerometerListener2);

 try {

 socket.close();

 } catch (IOException e) {

 e.printStackTrace();

 }

 super.onDestroy();

}

3.3 Scrolling for Zooming

In order to allow user to zoom the object, we include scrolling function on smart phone

screen. When the App is opened, the whole screen will be a touch sensor. If user uses

finger to scroll in negative y-axis direction (0,-1,0) on screen in SPCS, the value r will be

reduced and camera will be more closed to the object, vice versa. The zooming function

as for:

 @Override

 public boolean onTouch(View v, MotionEvent event) {

 return gestureDetector.onTouchEvent(event);

 }

 @Override

 public boolean onScroll(MotionEvent e1, MotionEvent e2, float distanceX,

float distanceY) {

 if (e1.getY() - e2.getY() > FLING_MIN_DISTANCE) {

 ySpeed=distanceY;

 } else if (e2.getY() - e1.getY() > FLING_MIN_DISTANCE) {

 ySpeed=distanceY;

 }

 return false;

 }

43

3.4 Link from Smart Phone to Server

From smart phone to navigation server, we used local Wi-Fi to transmit mobile’s sensor

data. In this research, the test smart phone used Android operating system. Firstly, the

smart phone will use TCP/IP to open a communication link to the server. After open the

link successfully, the gyroscope sensor and scrolling data will be transmitted to the server

and waited for process. In this research, we considered the balance between data flow and

smooth feeling. The data flow should not be too high in order to save bandwidth of

wireless service. And the refresh rate should high enough to get smooth feeling. The smart

phone will transmitted data package in 60Hz that means around 16.67ms one data

package will be sent to the server. While linking to the server, the implementation are the

following code:

Firstly, open a new Socket for TCP/IP connection:

 socket = new Socket();

 OpenConntThread oct=new OpenConntThread();

 sdt=new SendDataThread();

 oct.start();

Then execute the OpenConntThread for opening the connection:

 class OpenConntThread extends Thread{

 @Override

 public void run() {

 try {

 int aaa=0;

 socket.connect(new InetSocketAddress(ipaddr, 5000), 2500);

 isOpen=socket.isConnected();

 } catch (IOException e) {

 isOpen=false;

 e.printStackTrace();

 }

 if(isOpen) {

 try {

 outStr = socket.getOutputStream();

 output2 = new PrintWriter(socket.getOutputStream(), true);

44

 } catch (IOException e) {

 isOpen = false;

 e.printStackTrace();

 }

 try {

 bff = new BufferedReader(new

InputStreamReader(socket.getInputStream()));

 } catch (IOException e) {

 isOpen = false;

 e.printStackTrace();

 }

 }

 if(isOpen){

 sdt.start();

 }

 }

 }

Finally, open a Loop to continuously sending the motion data to the server:

 class SendDataThread extends Thread {

 private int count=0;

 @Override

 public void run() {

 try {

 Scanner scn;

 scn = new Scanner(socket.getInputStream());

 String msg=scn.nextLine();

 String[] msgs=msg.split(":");

 isOpen = msgs[0].equals("com") && msgs[1].equals("uuid?");

 if(isOpen){

 output2.println(UUID);

 }

 } catch (IOException e) {

 e.printStackTrace();

 isOpen=false;

 }

 while(true) {

 if(isOpen) {

 String sendString;

 if(isYaxis) {

 sendString = AngleX + " " + AngleY + " " +

gypoX*camtotatespeed + " " + gypoY*objrotatespeed + " " + ySpeed+" "+UUID;

 }else{

 sendString = AngleX + " " + AngleY + " " +

gypoX*camtotatespeed + " " + gypoZ*objrotatespeed + " " + ySpeed+" "+UUID;

 }

 try {

 output2.println(sendString);

 ySpeed=0.0f;

 }catch(java.lang.NullPointerException e){

45

 isOpen=false;

 }

 try {

 Thread.sleep(7);

 } catch (InterruptedException e) {

 e.printStackTrace();

 }

 }else{

 try {

 Thread.sleep(100);

 } catch (InterruptedException e) {

 e.printStackTrace();

 }

 count++;

 if(count>20){

 break;

 }

 }

 }

 }

 }//End of Thread

3.5 Process Inside Server

The navigation server use Java environment to establish network in order to help delivery

smart phone sensor data to UHD client. Server will receive the sensor data, analyse it and

send it to the UHD client in order to perform the model and camera rotation.

From navigation server to UHD client, the data will be sent by WebSocket technology.

Before sending data to UHD client, firstly the client should open the web page which

coded by WebGL and WebSocket to connect the navigation server. After WebSocket

hand shaking, the link between navigation server and UHD client will be established.

Then the motion data will be sent to the UHD client. Detail is in Section 3.7.

46

3.6 UHD Client, WebSocket and WebGL

The UHD client combines a UHD display and a computer. The display signal is

transmitted through HDMI cable from computer to UHD client. Firstly, the UHD client

will link to the navigation server through WebSocket technology. After data is sent by

smart phone, these data packages will be processed in server, and then target UHD client

will receive sensor data.

The WebSocket, different from conventional socket link, is used in web page. Since the

Internet service gains large demand in this age, interacting with contents is not only

important in conventional computer or smart phone Apps, but also in web page. Hence,

in this research, we tried to combine navigation system with WebSocket technology in

order to provide better system deliveries. Besides the benefit of embedding in web page,

the WebSocket uses JavaScript to design the application, which can be combined with

WebGL technology and reduce the learning cost.

The UHD client used WebGL to create a rendering system in order to achieve quick

model development purpose. Figure 26 shows original 3D model of Hiyoshi station. In

proposed system, the station model was built by open source 3D model software Blender.

With the transform plug-in, the model data can be exported into *.js file, which rendered

by WebGL through JavaScript on web page as Figure 27.

47

Figure 26: Static 3D model example of Hiyoshi station. (From Tokyu official website:

http://www.tokyu.co.jp/railway/station/yardmap/?id=13)

Figure 27: Prototype of 3D station model in web page

The benefit of WebGL makes station map delivery more widely. Not only can this

navigation system use station model file, but also station official website can use it for

48

advertisement and commercial purpose.

In an overview, the UHD client receives the sensor data from navigation server through

WebSocket technology in a web page, and then the WebGL gets the data through the

same page to apply rotation matrix, in order to change the direction of object model (the

3D station map) and camera. This model and scene will be rendered on web page and

transmitted to UHD display through HDMI cable. Finally client will show motion and

give interaction feeling to user.

As implementation, the model importing code of WebGL using Three.js library is:

 var loader=new THREE.JSONLoader();

 loader.load("hiyoshi.js",

 function (model,material) {

 var mesh=new THREE.Mesh(model,material[0]);

 //mesh.computeTangents();

 mesh.position.x += 16;

 mesh.position.z -= 2;

 mesh.position.y += 10;

 mesh.rotation.x = -Math.PI/2;

 mesh.castShadow = true;

 mesh.receiveShadow = true;

 monkey=mesh;

 scene.add(mesh);

 },"texture/"

);

The essential code of WebSocket is follow:

function initWebSocket(){

 webSocket = new WebSocket(wsUri);

 webSocket.onopen = function(evt) { onOpen(evt) };

 webSocket.onclose = function(evt) { onClose(evt) };

 webSocket.onmessage = function(evt) { onMessage(evt) };

 webSocket.onerror = function(evt) { onError(evt) };

}

49

3.7 Multi-Client Handling Method

As we mention in the earlier design (System Overview, Section 2.3), the proposed

Navigation Digital Signage System is not only for single user. The system requirement

specify the multiple user approach. In this Section, the Multi-Client Handling Method

will be introduced to fit the Multi-to-Multi system requirement.

In hardware scope, the Central Server will handle the main task of Multi-to-Multi

approach. In software scope, the main server executive program will provide Multi-to-

Multi approach by applying multi-thread function. The multi-thread function is like

multiple small workers inside the software process. Under this process, each worker will

have a handler to deal with the remote connection. The main thread is like a manger to

manage all the workers in order to make sure everything works properly. The detail

explanation is showed as Figure 28.

50

Figure 28: Class Diagram of the proposed Multi-Client Handling Method

M
e
ss

a
g
e
 T

ra
n
sm

it
 M

e
c
h
a
n
is

mCl
ie
nt
W
eb
S
oc
ke
tA
bs

Cl
ie
nt
W
eb
S
oc
ke
tL
is
te
n

<<
an
on
ym
ou
s>
>

On
R
ec
ei
ve
Li
st
en
er

Cl
ie
nt
S
m
ar
tP
ho
ne
Li
st
en

*

Cl
ie
nt
S
m
ar
tP
ho
ne
Ab
s

On
R
ec
ei
ve
Li
st
en
er

S
er
ve
rS
m
ar
tP
ho
ne
Ab
s

S
er
ve
rS
m
ar
tP
ho
ne
Li
st
en

On
Cl
ie
nt
Ca
m
eL
is
te
ne
r

*

<<
an
on
ym
ou
s>
>

On
Cl
ie
nt
Ca
m
eL
is
te
ne
r

*

S
er
ve
rW
eb
S
oc
ke
tA
bs

*

S
er
ve
rW
eb
S
oc
ke
tL
is
te
n

**

51

Inside the Central Server, different from single link server design, we applied multi-thread

client handler to process the incoming request. After launch the server execute file, the

server will firstly open two main threads, one is Socket-Server thread for incoming

Smartphone connection, another is WebSocket-Server thread for incoming Digital

Signage connection. Figure 28 shows the Class Diagram of inner server,

ServerSmartPhoneListen is for Socket-Server thread, and ServerWebSocketListen is for

WebSocket-Server thread. These two threads are almost the same except the special

process function which inside WebSocket-Server. Each main thread will open a port

number and create a loop, in order to continuously listen the port and receive any

connection at any time. Each main thread will also create a listener, which like a inform

interface for other to inform it when necessary. The listener from one main thread will

pass on another main thread. Another main thread will hold the listener and will use it to

inform opposite thread. In this system, the Socket-Server thread has the listener from

WebSocket-Server thread, and the WebSocket-Server thread also has the listener from

Socket-Server thread. Currently there are two port numbers have been used, one is for

Socket-Server, another is for WebSocket-Server.

52

Here shows the example code for openning Server of proposed system

public class MainClass {

 private static ServerWebSocketListen s;

 private static ServerSmartPhoneListen sspl;

 public static void main(String[] args) {

 sspl=new ServerSmartPhoneListen(5000);

 s=new ServerWebSocketListen(4999);

 sspl.startServer();

 s.startServer();

 sspl.addOnClientCameListener(s.getOnClientCameListener());

 }

}

When there is a connection from Digital Signage, the WebSocket-Server will transfer the

incoming connection into a WebSocket handler, showed as ClientWebSocketListen in

Figure 28 (Also seen at Appendix – B: Programming Code for Central Server). This

handler is a client thread that has a loop for receiving incoming data message from Digital

Signage‘s client computer. The handler will first evaluate the identity code, and tell the

main thread to allocate itself to proper position at the main list. The main list contain lots

of handlers and every handler handles one connection. Every digital signage subsystem

can define how many sub screens it has. The bigger screen could have more sub screens

and the smaller one could have less. A secondary list is created in order to manage those

sub screens.

When there is a connection from Smartphone, the Socket-Server will transfer the

incoming connection into a Socket handler, which represented as

ClientSmartPhoneListen in Figure 28. This handler will first evaluate the identity code

from Smartphone, then check the UUID of BLE Beacon and compare UUID to the main

list of WebSocket-Server, in order to find out which Digital Signage Subsystem it wants

to control. If the certain subsystem (or said, a handler) is found, the

ClientSmartPhoneListen (handler) will be put in secondary list inside WebSocket handler.

Which sub screen is allowed to control depends on the available slot in secondary list.

53

In this research, we design 3 sub screens for user to control. If there are 4 users connect

to this digital signage at the same time, then the 4th one will be in waiting list. After either

of 3 users who quits the control, as 1 sub screen now is available, then the 4th one will

get that control. When the control established, the motion data will be sent to the

OnReceiveListener, which be established to transmit data from one Socket handler (for

smartphone) to destination WebSocket handler (for digital signage).

54

4 Verification and Validation

In this section, the whole system will be broke down into single link sub system and multi-

to-multi system in order to be verified and validated. If the single link sub system could

be verified and validated, then only that we continue to do verification and validation in

multi-to-multi system. In this verification & validation process, we choose Hiyoshi’s and

Shibuya’s station structures to be our evaluation model. We used frame rate to verify the

data transmit speed and model rendering speed. These two items are important to system’s

performance, and will contribute to the frame rate. The frame rate should be at least 45

fps average to fit the system requirement. In validation process, we invited some subjects

to join our experiment, designed some questionnaire to get the feedback from the end user

in order to validate the whole system fit the target user’s requirement or not.

4.1 Single Link Sub System Verification & Validation

In this reseach, a navigation system based on the interaction of Ultra-High Definition

display is proposed. A single interaction subsystem has been built for verification and

validation. In this subsystem, only one user is allowed to control the 3D object at the same

time. And only one UHD display is used to test. The 3D object of this subsystem is

Hiyoshi Station model which showed inside webpage as Figure 27. The initial viewpoint

and the position of 3D object is also shown as Figure 27.

In the verification, we used stats.js library to test the frame rate of our system. This library

is introduced by mrdoob (http://mrdoob.com/). It can show the frame rate as well as delay

in WebGL rendering process. The screen shot of stats.js recorder is showed as Figure 29.

http://mrdoob.com/

55

Figure 29: Stats.js Frame Rate Recorder. (In the left top area)

As showed in Figure 29, the frame rate will be fully renewed in every 73 to 76 second. In

this research, in order to simulate the real implementation environment, we did the

verification and validation at the same time. While test subjects doing validation, the

stats.js would also record the frame rate. The frame rate was recorded for every

experiment subjects during their test period.

In the validation, 10 university students were invited as the experiment subjects. The

subjects were asked to use smart phone to control the 3D object. While controlling object,

the subjects were asked to answer a questionnaire. In this system, subjects needed to use

one hand or two hand to hold the smart phone. Thus, many of them feel like unpleased to

put down the hand and take pen to answer questionnaire. In order to solve this problem

and let subject focus on screen and smart phone, the researcher recorded their answer

instead of subjects themselves. After experiment, the subjects would check researcher’s

record of their answer, and gave sign in if there is no error or miss.

56

The questionnaire is shown as follow:

(Q1). Smoothness of Motion

(Q2). Most Prefer Axis for Object

(Q3). Rotation Speed for Camera

(Q4). Rotation Speed for Object

(Q5). Comment

The Q1 is measured by value 1 to 5. When the subject rotates smart phone, if the 3D

object inside the UHD client moves immediately, then it means smooth. If the same

motion in smart phone is done, after several delay the 3D object just starts to move, then

it means slack or not smooth. 5 represents the smoothest, and 1 represent non-smooth.

In Q2, subjects were asked to rotate around y-axis in SPCS, and then shifted to z-axis.

Then they were asked which rotation axis they would like to use.

The Q3 and Q4 are measured by the rate of smartphone rotation and object or camera

rotation. The rate here is represented as k in (Equation 1):

𝑘 =

𝑅𝑜

𝑅𝑠
 (Equation 1)

The 𝑅𝑠 and 𝑅𝑜 both represent rotation speed. In Q3, the 𝑅𝑠 represents the rotation

speed around y-axis or z-axis in SPCS according to the result of Q2. The 𝑅𝑜 represents

the rotation speed of object around z-axis in OCS. For example, if the rate k equals to 1,

it means that when subjects rotate smart phone for 360° degree, then the object will also

be rotated 360° degree. If the k equals to 2, it means that when smart phone is rotated

360° degree, the object will be rotated 720° degree. In Q4, the difference is that 𝑅𝑜

represents the rotation speed of camera around x-axis as Figure 25. In a word, the higher

57

k it is, faster object or viewing rotation it will be.

As for Q5, the subjects could write any comment if they want. As a free part, the result

will be discussed later.

Figure 30: The interface of control App for smart phone

The whole questionnaire time for one subject was around 5 to 7 minutes. Before starting

questionnaire, the UHD client and Navigation server already linked together. The subjects

could use Apps interface of smart phone to set up the rotation axis and rotation speed as

Figure 30. The IP Address here was the Navigation server’s address and set by researchers.

After set up axis and speed, start button would be clicked to start.

58

4.2 Result of Single Link System Verification & Validation

In this Section, the result of Verification and Validation will be showed.

Figure 31: Frame Rate Result of Single Link Sub System

The frame rate result of verification is showed as Figure 31. In this verification process,

10 times of frame rate had been recorded, and each time include 1 minute’s average frame

rate. In Figure 31, the average frame rate is 59.1 fps.

 𝑇𝑜𝑡𝑎𝑙 = 𝑓 × 𝑡 (Equation 2)

Then, with the (Equation 2) we could get the total frame which had been record in this

verification process. The total frames are 35460 = 59.1(fps) × 10(times) × 60(s) .

Amount these 35460 frames, the average frame rate is 59.1 fps which is bigger than 45

fps, and it means that the result fit the system requirement of smooth fresh rate. The

standard deviation is around 0.83 and because 0.83 ≪ 59.1 which showed the frame

rate is stable while verification process.

The result of questionnaire shows as Figure 32, Figure 33 and Figure 34. The average

values are shown as bar, and the number of value is shown inside with white label. For

Figure 32 and Figure 34, the standard deviations of results are also shown. Figure 32

59.1

0 10 20 30 40 50 60

Frame Rate

Frame Rate of Single Link Sub System

59

shows the result of Q1, Figure 33 shows the result of Q2, Figure 34 shows the result of

Q3 and Q4.

Figure 32: The average score of smoothness of motion

Figure 33: The percentage of most prefer rotation axis in SPCS

Figure 34: The average prefer rotation speed of camera and object

4.4

1 2 3 4 5

Smoothness of Motion

80%

20%

0% 25% 50% 75% 100%

z-axis

y-axis

1.06

1.01

0 0.5 1 1.5 2

Rotation Speed for Object

Rotation Speed for Camera

60

From the results, subjects got high smoothness feeling of rotating 3D object. The average

score of smoothness of motion is 4.4, and the standard deviation is around 0.51. None of

the subjects give less than 4 score of this subsystem.

From Figure 33, most of subjects preferred to use z-axis in SPCS. They said it is easier

to understand how to rotate than using y-axis.

From Figure 34, the average rotation speed rate for camera is 1.01, and rate for object is

1.06. The standard deviation of rotation speed rate for camera is around 0.31, and as for

object, it is around 0.38.

All the validation result showed better system requirement fitting.

From Figure 32, the goal of smooth controlling 3D map had been proved. Most of subjects

got smooth motion experience according to the low standard deviation.

From Figure 33, many of subjects preferred rotating around z-axis to control 3D map. At

the comment, many of them described that smart phone is like a big plane, when plane-

on the desk, it was more like the same situation as 3D map. They said the 3D map inside

UHD client was like a plane structure. For the subjects who liked to rotate around y-axis,

they agreed that z-axis was more intuitive, but they needed to use 2 hand to hold the smart

phone. The feeling was not convenient for them.

For the result and comment, although the majority would like to use z-axis, we will remain

that y-axis rotation option to user.

From Figure 34, both average rate is around 1.00. But both the standard deviation is

around 30% of standard speed. The prefer rotation speed rate is various from person to

person. From the comment of Q5, some subjects who prefer higher rotation rate spoke

about experience of playing some high reflect game like FPS game.

From the comment in Q5, most of subjects described a better feeling of understanding the

station structure. The feasibility of interaction is shown as エラー! 参照元が見つかり

61

ません。 and had been proved. Some subjects said that the rotation around x-axis which

for controlling camera was not that necessary. Rotation of 3D map in order to see from

different angle was more important. Some comments also showed that the zooming

function provided by touch screen is not that interesting for them.

As a result, many of them got feeling of holding a real map model on their hand. They

felt understanding the station’s structure more intuitive, especially for floor structure.

4.3 Multi-to-Multi Approach Verification & Validation

As an application system, not only the structure and performance, it is essential to test the

feasibility of proposed system. In this Section, an experiment was built to verify and

validate our system.

Two televisions were setup in a single room. One was digital signage subsystem, and

another was displaying a static image as a post sign. In this experiment, we developed a

subway station model for Shibuya station, showed as Figure 35. The Shibuya station was

famous in its shopping mall center, also in its complex construction structure. As a

comparison, the static image was set as Shibuya station static map, which provided by

Toyoko Subway official website. The Smartphone interface was the same as previous

validation and verification process [18].

62

Figure 35: The real system of digital signage subsystem

63

In verification, we used the same method as Single Link Sub System to verify the system.

The purpose of the verification process is to proof that no error/defect/fault during system

implementation [19]. Multi-to-Multi approach was combination of multiple Single Link

Sub System. In this system, as mentioned in Section 2.4 (System Architecture) and

Section 3.7 (Multi-Client Handling Method), there were several factors which influenced

the final frame rate of digital signage:

1. Firstly, the system should be run without error. This could be verified during

implement of the system. If there is no error happened and the whole system is not

shut down by any exception, then it proves that verification result fits the system

requirement.

2. Secondly, the 3-Dimensional station model should be displayed properly. As the

system design we mention in Section 2.3 (System Overview), there are 3 sub screens

and 1 main screen. The station model should be displayed in each screen properly.

3. Thirdly, the message should be transmitted to target digital signage on time. In this

research, in order to save dataflow for end user, each motion data will be transmitted

in 7 ms (which means the maximum system speed for digital signage could be

142 (𝑓𝑝𝑠) ≈ 1000(𝑚𝑠) ÷ 7(𝑚𝑠)). The central computer used multi-thread to

handle different messages, so the limit of process speed is CPU’s speed. After

transmitting data to end digital signage sub system, the refresh rate would be decided

by rendering speed.

All of these 3 factors finally contributes to frame rate of digital signage subsystem. Hence,

by verifying the final frame rate of digital signage while monitoring the system real time

log (real time error report) and 3D model’s situation (model rendering in display), we

64

could verify whether the system fit the system requirement or not. As showed in Figure

35, the frame rate will be on left top of screen and by fully renewed in every 73 to 76

second. In this research, in order to simulate the real implementation environment, we did

the verification and validation at the same time. While test subjects doing validation, the

stats.js would also record the frame rate. The frame rate was recorded for every

experiment subjects during their test period.

In validation, People were allowed to use our system freely. Both digital signage and

static map were under evaluation. The questionnaire were asked in both system by follow

(From 1 to 5, the understanding level becomes higher. 1 represents Not Understand, 5

represents fully Understand):

 UHD Navigation Signage System

Understanding of floors 1 2 3 4 5

Understanding of Subway Line 1 2 3 4 5

Understanding of Stairs & Elevators: 1 2 3 4 5

Understanding of Way to destination: 1 2 3 4 5

 Static Map

Understanding of floors 1 2 3 4 5

Understanding of Subway Line 1 2 3 4 5

Understanding of Stairs & Elevators: 1 2 3 4 5

Understanding of Way to destination: 1 2 3 4 5

In order to evaluate the feasibility of system, we also designed an extra questionnaire for

our UHD Navigation Signage System as follow (From 1 to 5, 1 represents not satisfy with

65

the item, 5 represents most satisfy with the item):

 UHD Navigation Signage System

Smoothness of control 1 2 3 4 5

System access speed 1 2 3 4 5

We also added a space for people to write some comment for us.

In the validation, 15 university students were invited as the experiment subjects. The

subjects were asked to use the smartphone control Shibuya station 3D map inside digital

signage subsystem, compare it with post map and then try to give satisfaction level to the

questionnaire.

For the question of understanding of floors, subjects were asked whether they got a briefly

understanding of how many floors and relationship between each floor or not. For the

question of understanding of subway line, subjects were asked whether they understood

how many subway lines inside station or not. For the question of understanding of stairs

& elevators, subjects were asked whether they got a briefly understand of position of

stairs & elevators or not. For the question of understanding of way to destination, subjects

were asked that assuming they were in some place of Shibuya station and they were

supposed to go somewhere, and then whether they could quickly find the way or not. For

the question of smoothness, subjects were asked to give the score from 1 to 5 in order to

evaluate the satisfaction of smoothness of control. The Access speed is that when subjects

decided to control 3D model whether the system response immediately or not.

In this research, as Navigation Digital Signage System is a Multi-to-Multi system, we

also asked subjects to fit out the questionnaire for validating the Multi-to-Multi function.

As Questionnaire 4 in Section 8 (Appendix – A: Questionnaire), we asked the following

66

question for subjects:

(Q1). Access Speed 1 2 3 4 5

(Q2). Smoothness of Control 1 2 3 4 5

(Q3). Disturb 1 2 3 4 5

(Q4). Satisfaction of Multi-to- 1 2 3 4 5

Multi System.

In this multi-to-multi validation process, 3 subjects would be in a group using the Digital

Signage at the same time. While using Digital Signage with Smartphone, they were asked

to answer from Q1 to Q4, and all the questions were evaluated in level from 1 to 5. The

Access Speed represents whether there is a big delay between clicking connection button

and got control. 1 means there is a big delay, 5 means the access speed is fast. The

Smoothness of Control represents the smoothness of controlling the 3D Station Model

inside Digital Signage. If the answer is 1, means there is a big delay after rotating the

Smartphone, and only after that certain delay, the 3D Station Model inside the screen

rotates. The Disturb is used to measure multiple user feasibility. While 3 subjects are

using this system at the same time, if the subject thinks that he or she is disturbed by other

user, or he or she cannot understand which screen is used, then he or she give 1 score to

Q3. If he or she thinks fully understand which screen he or she is controlling, then he or

she gives 5 score to Q3. The Q4 in terms of satisfaction of Multi-to-Multi system, he or

she will give an overall evaluation score to this system.

67

4.4 Result and Discuss of Multi-to-Multi Approach Evaluation

The frame rate result of verification is showed as Figure 36. In this verification process,

15 times of frame rate had been recorded, and each time include 1 minute’s average frame

rate. In Figure 36, the average frame rate is 58.2 fps.

Figure 36: The Frame Rate Result of Digital Signage.

Then, with the (Equation 2) which mentioned in Section 4.2, we could get the total frame

which had been record in this verification process. The total frames are 523800 =

58.2(fps) × 15(times) × 60(s). Amount these 523800 frames, the average frame rate is

58.2 fps which is bigger than 45 fps, and it means that the result fit the system requirement

of smooth fresh rate. The standard deviation is around 1.38 and because 1.38 ≪ 59.1

which showed the frame rate is stable while verification process.

In the validation process, 15 students participated as subjects doing the evaluation. The

result of validation questionnaire is showed as Figure 37, and Figure 38. The average

values are shown as bar, and the number of value is shown inside with black label. The

standard deviations of results are also shown.

58.2

0 10 20 30 40 50 60

Frame Rate

Frame Rate (FPS)

68

Figure 37: The Satisfaction Result of Post Sign and Digital Signage.

Figure 38: The Smoothness and Access Speed Result of Digital Signage.

2.07

2.53
2.33

2.53

4.33 4.40
4.60

4.07

0

1

2

3

4

5

Way to Destination Stairs & Elevators Subway Lines Floors

Satisfaction Result

Poster Sign Digital Signage

4.93

4.67

1 2 3 4 5

Access Speed

Smoothness

Digital Signage

** ** ** **

69

As a result, UHD Navigation Signage System shows better performance on understanding

the subway station structure and wayfinding. The satisfaction of understanding of floors

of digital signage is 4.07, which is 1.54 higher than traditional post sign. The satisfaction

of understanding of subway lines of digital signage is 4.6, which is 2.27 higher than

traditional post sign. The satisfaction of understanding of stairs & elevators of digital

signage is 4.4, which is 1.87 higher than traditional post sign. The satisfaction of

understanding of way to destination of digital signage is 4.33, which is 2.26 higher than

traditional post sign.

In order to test the difference is significant or not, we also applied T-Test method in both

data set. Since one subject was asked to give evaluation level on same question for Digital

Signage and Post Sign, we used Microsoft Excel as a tool to do our T-Test. While using

Data Analysis function, we chosed “t-Test: Paired Two Sample for Means” as our tool.

There are 4 groups of data, Floors (represents satisfaction of understanding the floors),

Subway Lines (represents satisfaction of understanding the subway lines), Stairs &

Elevators (represents satisfaction of understanding of stairs & elevators), and Way to

Destination (represents satisfaction of understanding of way to destination). Each group

had two sample, and we assumed each group that the hypothesized mean difference is 0.

The result of P value of each group was showed as Figure 37 and Table 3. In Figure 37,

if the P value is less than 0.05 and higher than 0.01, then upon the data bar it would be

marked by *. If the P value is less than 0.01, then upon the data bar it would be marked

**. The less P value it is, in statistic, the more significant difference of two value it will

be. The P value of each group was showed in Table 3 at below:

70

 Way to Destination
Stairs &

Elevators
Subway Lines Floors

P value 0.0001861047 0.0014831045 0.0000014053 0.0006282670

Table 3: T-Test of Paired Two Simple for Means.

For the smoothness of control and system access speed, showed as Figure 38, subjects

gave average 4.67 (Standard Deviation is 0.47) and 4.93 (Standard Deviation is 0.25)

score on each. The result showed that the rotation smoothness is in good condition and

the system access speed was quick.

Some comments suggested that the system could provide some icon for each subway lines.

Subjects also suggested that adding some function for customers to make some stair

transparent would be better to understanding the structure.

In Multi-to-Multi function validation, the result is showed as Figure 39. For Q1 the access

speed, the average score is 4.78, the standard deviation is 0.42. For Q2, the Smoothness,

the average score is 4.22, the standard deviation is 0.41. For Q3, Not Disturb, the average

score is 4.22, the deviation is 0.92. For Q4, the satisfaction of whole system, the average

score is 4.33, and the standard deviation is 0.47.

71

Figure 39: The Multi-to-Multi function validation result of Digital Signage.

The result shows that subjects were satisfied with the Multi-to-Multi system, most of

subjects got high system access speed since multiple user uses it at the same time. And

the motion data transmitting is fast since smoothness achieve high average score. Most

of subjects can cleanly distinguish which sub screen they were controlled. The whole

system got satisfaction score of average 4.33 that validate this system fit the system

requirement.

4.33

4.22

4.22

4.78

1 2 3 4 5

Whole System Satisfaction

Not Disturb

Smoothness

Access Speed

Multi-to-Multi Function

72

5 Conclusion and Future Work

In this research, we proposed a new navigation system based on the interaction of ultra-

high definition display. We used Blender to develop a simple 3D model of Hiyoshi station

and built a single link subsystem to test the feasibility of controlling. The verification and

validation of this subsystem had been done. We also used Blender to build a more

complex model of Shibuya Station to test the feasibility of Multi-to-Multi approach of

this system. The verification and validation of this system also had been done.

As a result, most of users got a better experience when tried to understand the station

structure. The rotation function gave the feeling of holding a 3D map. And the different

angle viewing allowed user to understand the floor structure more easily. The big UHD

screen can provided the whole picture of construction structure. This system was expected

to be a solution of wayfinding problem on future complex interchange subway station.

For future work, the station model should be refined and be redesigned considering more

about cartology. E.g. the more reality texture need to be added into the model to provide

more precise information. The color and texture should be added properly in order to

reduce the gap between real world and virtual map. These color and texture usually come

from subway station. We plan to cooperate with Subway Company to test this navigation

system.

For real world application, each map’s viewpoint should depend on the position of UHD

display. E.g. the camera should shift near the stair when this 3D map is shown at a UHD

display which near the stair. By this configuration, user’s mind can shift from real world

to virtual map quickly and understand the virtual path more efficiently.

73

6 Acknowledgements

First and foremost, I would like to express my deeply thanks to my supervisor, Prof. Ogi

Tetsuro, for his kindly and inspirational guidance during my two years’ master research

life. Without his patient and deep knowledge, this research cannot be achieved to its

potential level.

I would like to thank Associate Professor KOHTAKE, Naohiko from SDM Keio and

Associate Professor Sisi Zlatanova from TU Delft, for their patient guidance and

information on V&V, location system and navigation system.

Further thanks are due to all the lab member of Media System Lab. These two year, we

shared our happiness during the discussion, wherever it is at the lab meeting or Gassyuku

in Izu Oshima. Special thanks give to my best friend, Bansod Prashant, for his open mind

discussion and patient guidance with my English.

I would like to give my thanks to my parents, who strongly support me with the whole

oversea study. I would also like to give my thanks to my special, Pin Wen, who deeply

and warmly with me.

74

7 Bibliography

[1] A. Zanella, N. Bui, A. Castellani, L. Vangelista and M. Zorzi, "Internet of Things

for Smart Cities," Internet of Things Journal, IEEE, vol. 1, no. 1, pp. 22-32, Feb

2014.

[2] S. Kim, E. Park, S. Hong, Y. Cho and A. del Pobil, "Designing digital signage for

better wayfinding performance: New visitors' navigating campus of university," in

Interaction Sciences (ICIS), 2011 4th International Conference on, 2011.

[3] A. Corrales Paredes, M. Malfaz and M. Salichs, "Signage System for the

Navigation of Autonomous Robots in Indoor Environments," Industrial

Informatics, IEEE Transactions on, vol. 10, no. 1, pp. 680-688, Feb 2014.

[4] J. Lee and K. Yoon, "The application of digital signage system using smart

device," in Advanced Communication Technology (ICACT), 2014 16th

International Conference on, 2014.

[5] J. She, J. Crowcroft, H. Fu and P.-H. Ho, "Smart Signage: An Interactive Signage

System with Multiple Displays," in Green Computing and Communications

(GreenCom), 2013 IEEE and Internet of Things (iThings/CPSCom), IEEE

International Conference on and IEEE Cyber, Physical and Social Computing,

2013.

[6] H. Sato, M. Urata, K. Yoguchi, N. Arakawa, N. Kanamaru and N. Uchida,

"Linking digital signage with mobile phones," in Intelligence in Next Generation

Networks (ICIN), 2011 15th International Conference on, 2011.

75

[7] K. H. K. Choi, T. H. S. Chu and H. C. B. Chan, "Dynamic and interactive

intelligent signage system," in 2012 IEEE International Conference on Consumer

Electronics (ICCE), 2012.

[8] H.-J. Suh, "A Wireless Triggered Method of Digital Signage Based on Periodic

Scans of a Smartphone," International Journal of Software Engineering and Its

Applications, vol. 9, no. 9, pp. 197-204, 2015.

[9] J. S. Lee, S. W. Moon, J. W. Lee and K. S. Yoon, "A Study on Digital Signage

Interaction Using Mobile Device," International Journal of Information and

Electronics Engineering, vol. 5, no. 5, p. 394, 2015.

[10] J. Lee and K. Yoon, "The application of digital signage system using smart

device," in Advanced Communication Technology (ICACT), 2014 16th

International Conference on, 2014.

[11] J. She, J. Crowcroft, H. Fu and P.-H. Ho, "Smart Signage: A Draggable Cyber-

Physical Broadcast/Multicast Media System," in Green Computing and

Communications (GreenCom), 2012 IEEE International Conference on, 2012.

[12] J. She, J. Crowcroft, H. Fu and P.-H. Ho, "Smart Signage: An Interactive Signage

System with Multiple Displays," in Green Computing and Communications

(GreenCom), 2013 IEEE and Internet of Things (iThings/CPSCom), IEEE

International Conference on and IEEE Cyber, Physical and Social Computing,

2013.

[13] R. Passini, "Wayfinding: A conceptual framework," Urban Ecology, vol. 5, no. 1,

pp. 17-31, 1981.

76

[14] J. S. Lee, J. W. Lee, H. Jung, S. Moon and K. Yoon, "The implementation of 4K

digital signage system," in 16th International Conference on Advanced

Communication Technology, 2014.

[15] H. T. Jung, J. S. Lee, Y. J. Jeong and K. S. Yoon, "Digital signage system for

supporting high quality resolution," in Computing and Convergence Technology

(ICCCT), 2012 7th International Conference on, 2012.

[16] M. Schubin, "WHY 4K: VISION & TELEVISION," in Spring Technical Forum

of CableLabs-NCTA-SCTE, 2012.

[17] K. Masaoka, M. Emoto, M. Sugawara and F. Okano, "Presence and preferable

viewing conditions when using an ultrahigh-definition large-screen display," in

Electronic Imaging 2005, 2005.

[18] Z. Liang and T. Ogi, "Navigation System Based on Interaction of Ultra

HighDefinition Display," in ASIAGRAPH 2016 Forum in Toyama proceedinghs,

Toyama, Japan, 2016.

[19] D. D. Walden, G. J. Roedler, K. Forsberg, R. D. Hamelin and T. M. Shortell,

Systems Engineering Handbook: A Guide for System Life Cycle Processes and

Activities, John Wiley & Sons, Inc, 2015.

77

8 Appendix – A: Questionnaire

78

Questionnaires 1

1. Do you think the big stations like Yokohama and Shibuya make you confuse about

finding the route?

☐ Yes. ☐No.

2. Do you confuse about where the exits it is? ____________________________________

☐ Yes. ☐No.

3. Do you confused about changing from line to line? ______________________________

☐ Yes. ☐No.

4. Is there any map about station structure in front of you when you were out of subway

and at a platform?

☐ Yes, Always there. ☐ Yes, sometimes. ☐No.

4.1 Is the station map clear and helpful for you to find the route?

☐ Yes, Always help. ☐ Yes, sometimes. ☐No.

5. Is the indicator which inside station helpful for you?

☐ Always ☐No. ☐other: _____________________

6. What kind of map do you think it is helpful for you?

☐ ☐ ☐

7. Nationality: ________________________________

79

Questionnaire 2

1. The Smoothness of Motion:

2. Rotation Speed: ____________________________

3. Prefer Axis to rotate object: __________________

4. Prefer Axis to rotate camera: ________________

5. Comment for this navigation system:

Signature: ________________________________

Slack Smoothest

1 2 3 4 5

80

Questionnaires 3

1. While using post map and UHD navigation signage system, please give the score for

the following item. From 1 to 5, the understanding level becomes higher. 1 represents

Not Understand, 5 represents fully understand.

 UHD Navigation Signage System Static Map

Understanding of floors 1 2 3 4 5 1 2 3 4 5

Understanding of Subway Line 1 2 3 4 5 1 2 3 4 5

Understanding of Stairs &

Elevators:
1 2 3 4 5 1 2 3 4 5

Understanding of Way to

destination:
1 2 3 4 5 1 2 3 4 5

2. After using the system, please give the score for the following item.

 UHD Navigation Signage System

Smoothness of control 1 2 3 4 5

System access speed 1 2 3 4 5

3. Please give some comments, if any.

Signature: _______________________________________

81

Questionnaires 4

While using UHD navigation signage system with other users at the same time, please

give the score for the following items. From 1 to 5, the level becomes higher.

1. After press the connect button, is system access speed quick? From 1 to 5, 1

represents the access speed is slow, and 5 represents less delay of accessing system.

1 2 3 4 5

2. After connecting the system, are you satisfied with the control smoothness?

1 2 3 4 5

3. While using the system with other users at the same time, do you feel disturb by

others? 1 represents strongly disturb by others, and 5 means you don't feel that much

difference at all.

1 2 3 4 5

4. Please give the satisfaction level for multi-to-multi system.

1 2 3 4 5

5. Please give some comments, if any.

Signature: ____________________________________

82

83

9 Appendix – B: Programming Code for Central Server

Example Code for ClientWebSocketListen

import Processor.ClientProcessor;

import Processor.OnReceiveListener;

import Processor.OutLog;

import Processor.ReceiveEvent;

import ServerSmartPhone.ClientSmartPhoneAbs;

import ServerWebSocket.ClientWebSocketAbs;

import java.io.IOException;

import java.net.Socket;

import java.net.SocketException;

import java.text.SimpleDateFormat;

import java.util.ArrayList;

import java.util.Date;

import java.util.logging.Level;

import java.util.logging.Logger;

public class ClientWebSocketListen extends ClientWebSocketAbs{

 private String UUID; //The unique iBeacon ID

 private ArrayList<ClientSmartPhoneAbs> smartphonelist; //Maximum 3

smartphone in the list

 private OnReceiveListener orl;

 public OutLog outlog;

 public ArrayList<Object> accessList;

 /**

 *

 * @param client

 */

 public ClientWebSocketListen(Socket client) {

 super(client);

 this.accessList=new ArrayList<>();

 if (this.isWebsocketLink()) {

 /** Create a receive OnReceiveListener for smart phone

 * when smartphone client receive a msg, then it will

 * inform this OnReceiveListener, to use the send method

 * of WebSocket client to send msg to the remote browser

 */

 orl = (ReceiveEvent receiveEvent) -> {

 if (ClientWebSocketListen.this.isWebsocketLink()) {

 try {

 send(receiveEvent.getReceiveMsg());

 return true;

 } catch (java.net.SocketException ex) {

 //

 try {

 ClientWebSocketListen.this.close();

 return false;

 } catch (IOException e) {

 if(this.outlog!=null){

84

 outlog.print(new SimpleDateFormat("yyyy-

MM-dd HH:mm:ss.SSS").format(new Date()));

 outlog.println("---Client " +

ClientWebSocketListen.this.getClientInfo() + " ======= " +

e.toString());

 }else{

 System.out.print(new

SimpleDateFormat("yyyy-MM-dd HH:mm:ss.SSS").format(new Date()));

 System.out.println("---Client " +

ClientWebSocketListen.this.getClientInfo() + " ======= " +

e.toString());

 }

 return false;

 }

 }catch (IOException ex) {

Logger.getLogger(ClientWebSocketListen.class.getName()).log(Level.SE

VERE, null, ex);

 return false;

 }

 } else {

 return false;

 }

 };

 //Set up my processor

 this.myProcessor=new ClientProcessor() {

 @Override

 public void initialProcess() {

 //Check for WebSocket Signage's UUID

 try {

 sendDirectly("com:uuid?");

 }catch (SocketException ex){

 //Need Exception!

 }catch (IOException ex) {

Logger.getLogger(ClientWebSocketListen.class.getName()).log(Level.SE

VERE, null, ex);

 }

 String msg=receiveDirectly();

 String[] data = null;

 if(msg!=null){

 data=msg.split("=");

 }

 if(data!= null && data.length>1){

 if(data[0].equals("uuid")){

 ClientWebSocketListen.this.UUID=data[1];

ClientWebSocketListen.this.println("UUID="+ClientWebSocketListen.thi

s.UUID);

 }else{

ClientWebSocketListen.this.setIsWebSocketLink(false);

 }

 }else{

85

ClientWebSocketListen.this.setIsWebSocketLink(false);

 }

 //End of checking UUID

 }

 @Override

 public void sendProcess(String data) {

 try {

 sendDirectly(data);

 } catch (IOException ex) {

Logger.getLogger(ClientWebSocketListen.class.getName()).log(Level.SE

VERE, null, ex);

 }

 }

 @Override

 public String receiveProcess(String message) {

 ClientWebSocketListen.this.println("Process_recv:" +

message);

 try {

 send(message);

 } catch (IOException ex) {

Logger.getLogger(ClientWebSocketListen.class.getName()).log(Level.SE

VERE, null, ex);

 }

 return message;

 }

 };

 }

 }

 /**

 *

 * @return if the link is correct, it will return the

OnReceiveListener. If it is not, it will return a null.

 */

 public OnReceiveListener getOnReceiveListener(){

 if (this.isWebsocketLink()) {

 return this.orl;

 }else{

 return null;

 }

 }

 @Override

 protected void onReceive(String message) {

 //System.out.println("recv:"+message);

 }

86

 @Override

 protected void onClose() {

 if (outlog != null) {

 outlog.print(new SimpleDateFormat("yyyy-MM-dd

HH:mm:ss.SSS").format(new Date()));

 outlog.println("---Client " + this.getClientInfo() + "

======= onClose");

 } else {

 System.out.print(new SimpleDateFormat("yyyy-MM-dd

HH:mm:ss.SSS").format(new Date()));

 System.out.println("---Client " + this.getClientInfo() + "

======= onClose");

 }

 }

 @Override

 protected void onOpen() {

 if (outlog != null) {

 outlog.print(new SimpleDateFormat("yyyy-MM-dd

HH:mm:ss.SSS").format(new Date()));

 outlog.println("---Client " + this.getClientInfo() + "

======= onOpen");

 } else {

 System.out.print(new SimpleDateFormat("yyyy-MM-dd

HH:mm:ss.SSS").format(new Date()));

 System.out.println("---Client " + this.getClientInfo() + "

======= onOpen");

 }

 }

 @Override

 protected void onPong() {

 if (outlog != null) {

 outlog.print(new SimpleDateFormat("yyyy-MM-dd

HH:mm:ss.SSS").format(new Date()));

 outlog.println("---Client " + this.getClientInfo() + "

======= onPong");

 } else {

 System.out.print(new SimpleDateFormat("yyyy-MM-dd

HH:mm:ss.SSS").format(new Date()));

 System.out.println("---Client " + this.getClientInfo() + "

======= onPong");

 }

 }

 @Override

 protected void onPing() {

 if (outlog != null) {

 outlog.print(new SimpleDateFormat("yyyy-MM-dd

HH:mm:ss.SSS").format(new Date()));

 outlog.println("---Client " + this.getClientInfo() + "

======= onPing");

 } else {

 System.out.print(new SimpleDateFormat("yyyy-MM-dd

HH:mm:ss.SSS").format(new Date()));

 System.out.println("---Client " + this.getClientInfo() + "

87

======= onPing");

 }

 try {

 this.sendPongFrame();

 } catch (IOException ex) {

Logger.getLogger(ClientWebSocketListen.class.getName()).log(Level.SE

VERE, null, ex);

 }

 }

 private void println(String msg){

 if (outlog != null) {

 outlog.println(msg);

 } else {

 System.out.println(msg);

 }

 }

 public String getUUID(){

 return this.UUID;

 }

}

88

Example Code for ClientSmartPhoneListen

import Processor.ClientProcessor;

import Processor.OnReceiveListener;

import Processor.ReceiveEvent;

import ServerSmartPhone.ClientSmartPhoneAbs;

import java.net.Socket;

import java.util.ArrayList;

import java.util.Iterator;

public class ClientSmartPhoneListen extends ClientSmartPhoneAbs{

 private final ArrayList<OnReceiveListener> listeners = new

ArrayList<>();

 private String uuid;

 public ClientSmartPhoneListen(Socket client) {

 super(client);

 uuid=null;

 this.myProcessor=new ClientProcessor(){

 @Override

 public void initialProcess() {

 send("com:uuid?");

 String

uuidrecv=ClientSmartPhoneListen.this.receiveDirectly();

 if(uuidrecv!=null){

 ClientSmartPhoneListen.this.uuid=uuidrecv;

 System.out.println(uuidrecv);

 }else{

ClientSmartPhoneListen.this.setIsSmartPhoneLink(false);

 }

 }

 @Override public void sendProcess(String data) {

 }

 @Override public String receiveProcess(String message) {

 return null;

 }

 };

 }

 @Override

 protected void onReceive(String message) {

 //System.out.println(message);

 this.notifyDemoEvent(message);

 }

 @Override

 protected void onClose() {

 //throw new UnsupportedOperationException("Not supported

yet."); //To change body of generated methods, choose Tools |

Templates.

 }

 @Override

 protected void onOpen() {

89

 //System.out.println("===New SmartPhone Coming!

"+this.getClientInfo()+"===");

 }

 public void addOnReceiveListener(OnReceiveListener

onReceiveListener){

 this.listeners.add(onReceiveListener);

 }

 private void notifyDemoEvent(String messageCome) {

 /*

 if (!this.listeners.isEmpty()) {

 for (OnReceiveListener eventListener : listeners) {

 ReceiveEvent demoEvent = new ReceiveEvent(this,

messageCome);

 boolean isAlive=eventListener.processEvent(demoEvent);

 }

 }

 */

 //System.out.println("Size of Listener:"+listeners.size());

 Iterator<OnReceiveListener> iterator = listeners.iterator();

 while (iterator.hasNext()) {

 OnReceiveListener c = iterator.next();

 if (c != null) {

 ReceiveEvent demoEvent = new ReceiveEvent(this,

messageCome);

 boolean isAlive = c.processEvent(demoEvent);

 if (!isAlive) {

 iterator.remove();

 }

 }

 }

 }

}

90

Package of Processor

Example Code for ClientProcessor

package Processor;

public interface ClientProcessor {

 public void initialProcess();

 public void sendProcess(String data);

 public String receiveProcess(String message);

}

Example Code for ClientSMCameEvent

package Processor;

import ServerSmartPhone.ClientSmartPhoneAbs;

import java.util.EventObject;

public class ClientSMCameEvent extends EventObject {

 private static final long serialVersionUID = 3L;

 private ClientSmartPhoneAbs client;

 public ClientSMCameEvent(Object source, ClientSmartPhoneAbs

client) {

 super(source);

 this.client=client;

 }

 public ClientSmartPhoneAbs getClientSmartPhone(){

 return this.client;

 }

}

Example Code for ClientWBCameEvent

package Processor;

import ServerWebSocket.ClientWebSocketAbs;

import java.util.EventObject;

public class ClientWBCameEvent extends EventObject {

 private static final long serialVersionUID = 3L;

 private ClientWebSocketAbs client;

 public ClientWBCameEvent(Object source, ClientWebSocketAbs client)

{

 super(source);

 this.client=client;

 }

 public ClientWebSocketAbs getClientWebSocketAbs(){

 return this.client;

 }

}

91

Example Code for OnReceiveListener

package Processor;

import java.util.EventListener;

public interface OnReceiveListener extends EventListener {

 public boolean processEvent(ReceiveEvent receiveEvent);

}

Example Code for OnSMClientCameListener

package Processor;

import java.util.EventListener;

public interface OnSMClientCameListener extends EventListener {

 public void processEvent(ClientSMCameEvent demoEvent);

}

Example Code for OnWebClientCameListener

package Processor;

import java.util.EventListener;

public interface OnWebClientCameListener extends EventListener {

 public void processEvent(ClientWBCameEvent demoEvent);

}

Example Code for ReceiveEvent

package Processor;

import java.util.EventObject;

public class ReceiveEvent extends EventObject {

 private static final long serialVersionUID = 2L;

 private String message;

 /**

 *

 * @param source usually use "this"

 * @param message the message when a Socket link receive

 */

92

 public ReceiveEvent(Object source, String message) {

 super(source);

 this.message=message;

 }

 /**

 *

 * @return get the message which the socket receive

 */

 public String getReceiveMsg(){

 return this.message;

 }

}

93

10 Appendix – C: Programming Code for Digital

Signage

Example Code for Digital Signage Client (JavaScript using Three.js “WebGL Library”)

<!DOCTYPE html>

<html lang="en">

<head>

<meta charset="UTF-8">

<title>Station</title>

<script src="three.min.js"></script>

<script src="stats.js"></script>

<script src="dat.gui.js"></script>

<script type="text/javascript">

var renderer;

var height,width;

var webSocket;

var wsUri;

wsUri = "ws://131.113.250.176:4999";

//wsUri = "ws://127.0.0.1:4999";

var uuid="1AE18C1C-6C7B-4AED-B166-4462634DA855";

//uuid="00000000-9D6A-1001-B000-001C4D834503";

var degreeX=0.0;

var degreeY=0.0;

var gypoX=0.0;

var gypoY=0.0;

var gravityZ=0.0;

var cameraDegree=0.0;

var cameraDegreeY1=0.0;

var cameraDegreeY2=0.0;

var cameraDegreeY3=0.0;

var cameraDegreeX1=0.0;

var cameraDegreeX2=0.0;

var cameraDegreeX3=0.0;

var cameraLength1=20;

var cameraLength2=20;

var cameraLength3=20;

var cameraDegreeSelf=0.0;

var cameraLength=25;

var mainOutput;

//define of all 3 subScreen

var gyroX1=0.0;

var gyroY1=0.0;

94

var flip1=0.0;

var gyroX2=0.0;

var gyroY2=0.0;

var flip2=0.0;

var gyroX3=0.0;

var gyroY3=0.0;

var flip3=0.0;

var df=1.0;

var color1=new THREE.Color().setRGB(0.7/df,0.9/df,0.7/df);

var color2=new THREE.Color().setRGB(0.9/df,0.7/df,0.7/df);

var color3=new THREE.Color().setRGB(0.7/df,0.8/df,0.9/df);

var color4=new THREE.Color().setRGB(0.9/df,0.9/df,0.7/df);

function initThree() {

 mainOutput = document.getElementById("info");

 renderer=new THREE.WebGLRenderer({antialias:true});

 renderer.setSize(window.innerWidth, window.innerHeight);

 renderer.setClearColor(0x000000, 1.0);

 renderer.shadowMapEnabled = true;

 //renderer.shadowMap.enabled=true;

 //try to increase the quality of shadow

 //renderer.shadowMapType=THREE.PCFSoftShadowMap;

 renderer.setPixelRatio(window.devicePixelRatio);

document.getElementById("canvas3d").appendChild(renderer.domElement)

;

}

//======================================

function initWebSocket(){

 webSocket = new WebSocket(wsUri);

 webSocket.onopen = function(evt) { onOpen(evt); };

 webSocket.onclose = function(evt) { onClose(evt); };

 webSocket.onmessage = function(evt) { onMessage(evt); };

 webSocket.onerror = function(evt) { onError(evt); };

}

function onOpen(evt){

 var serverData='onOpen: ' +

evt.data;

 var pre = document.createElement("p");

 pre.style.wordWrap = "break-word";

 pre.innerHTML = serverData;

 mainOutput.innerHTML="";

 mainOutput.appendChild(pre);

}

function onClose(evt){

 color1=color2=color3=color4=new

THREE.Color().setRGB(1.0,0.6,0.6);

}

function onMessage(evt){

 var serverData=evt.data;

95

 var pre = document.createElement("p");

 pre.style.wordWrap = "break-word";

 pre.innerHTML = serverData;

 mainOutput.innerHTML="";

 mainOutput.appendChild(pre);

 var dataset=serverData.split(' ');

 if(dataset.length>1 && dataset[0]!=="motion"){

 degreeX=(parseFloat(dataset[0])-80.0)/90.0*Math.PI*0.7;

 degreeY=(parseFloat(dataset[1]))/90.0*25.0-5.0;

 gypoX=parseFloat(dataset[2]);

 gypoY=parseFloat(dataset[3]);

 gravityZ=parseFloat(dataset[4]);

 }else if(dataset.length>1 && dataset[0]==="motion"){

 var rate=0.5;

 switch(dataset[1]){

 case "1":

 gyroX1=parseFloat(dataset[2]);

 gyroY1=-parseFloat(dataset[3]);

 var tmp=parseFloat(dataset[4])*rate;

 if(tmp!==0.0){

 flip1 = tmp * 0.01;

 }else{

 flip1*=0.985;

 }

 break;

 case "2":

 gyroX2=parseFloat(dataset[2]);

 gyroY2=-parseFloat(dataset[3]);

 //flip2=parseFloat(dataset[4])*rate;

 var tmp=parseFloat(dataset[4])*rate;

 if(tmp!==0.0){

 flip2 = tmp * 0.01;

 }else{

 flip2*=0.985;

 }

 break;

 case "3":

 gyroX3=parseFloat(dataset[2]);

 gyroY3=-parseFloat(dataset[3]);

 //flip3=parseFloat(dataset[4])*rate;

 var tmp=parseFloat(dataset[4])*rate;

 if(tmp!==0.0){

 flip3 = tmp * 0.01;

 }else{

 flip3*=0.985;

 }

 break;

 }

 }else{

 var command=serverData.split(":");

 if(command.length>1){

 if(command[0]==="com" && command[1]==="uuid?"){

 webSocket.send("uuid="+uuid);

 pre = document.createElement("p");

96

 pre.style.wordWrap = "break-word";

 pre.innerHTML = "uuid="+uuid;

 mainOutput.innerHTML="";

 mainOutput.appendChild(pre);

 }

 }

 }

}

function onError(evt){

 color1=color2=color3=color4=new

THREE.Color().setRGB(1.0,0.0,0.0);

}

function initStats(){

 var stats = new Stats();

 stats.setMode(0);

 stats.domElement.style.position = 'absolute';

 stats.domElement.style.left = '0px';

 stats.domElement.style.top = '0px';

document.getElementById("canvas3d").appendChild(stats.domElement);

 return stats;

}

var camera;

var camera2;

var camera3;

var camera4;

var stats;

function initCamera() {

 camera = new THREE.PerspectiveCamera(45, window.innerWidth /

window.innerHeight , 0.1 , 1000);

 camera.position.x = -3;

 camera.position.y = 4;

 camera.position.z = 3;

 camera.up.x = 0;

 camera.up.y = 0;

 camera.up.z = 1;

 camera.lookAt({x:0, y:0, z:0 });

 camera2 = new THREE.PerspectiveCamera(45, window.innerWidth /

window.innerHeight , 0.1 , 1000);

 camera3 = new THREE.PerspectiveCamera(45, window.innerWidth /

window.innerHeight , 0.1 , 1000);

 camera4 = new THREE.PerspectiveCamera(45, window.innerWidth /

window.innerHeight , 0.1 , 1000);

}

//setup scene

var scene;

function initScene() {

 scene = new THREE.Scene();

}

//setup light

function initLight() {

 var spotLight = new THREE.SpotLight(0xffffff);

 spotLight.position.set(40, 45, -40);

 spotLight.castShadow = true;

97

 spotLight.shadowMapHeight=2048;

 spotLight.shadowMapWidth=2048;

 scene.add(spotLight);

 var ambientLight = new THREE.AmbientLight("#aaaaaa");

 scene.add(ambientLight);

}

//setup mesh

var monkey;

var spritey;

var p=[-6.5,-5,-20];

var ra=0.5;

function initObject(){

 //Loader JS

 var loader2= new THREE.JSONLoader();

 loader2.load("shibuy7.js",

 function (model,material) {

 var mesh=new THREE.Mesh(model,material[0]);

 mesh.scale.set(0.5,0.5,0.5);

 mesh.position.x += p[0];

 mesh.position.y += p[1];

 mesh.position.z += p[2];

 mesh.rotation.x+=Math.PI;

 monkey=mesh;

 },"texture/"

);

 loader2.onLoadComplete=function(){

 monkey.castShadow = true;

 monkey.receiveShadow = true;

 scene.add(monkey);

 };

 spritey = makeTextSprite("Fukutoshin Line",

 { fontsize: 24,

 borderColor: {r: 149, g: 81, b: 29, a: 1.0},

 backgroundColor: {r: 222, g: 143, b: 86, a:

0.8} }

);

 spritey.position.set(p[0]+(1.5)*ra,

 p[1]+(0)*ra,

 p[2]-(-4.5)*ra);

 scene.add(spritey);

 var spritey2 = makeTextSprite("Hanzonmon Line",

 { fontsize: 24,

 borderColor: {r: 138, g: 56, b: 202, a:

1.0},

 backgroundColor: {r: 170, g: 160, b: 200,

a: 0.8} }

);

 spritey2.position.set(p[0]+(18)*ra,

 p[1]+(6)*ra,

 p[2]+(4)*ra);

 scene.add(spritey2);

 var spritey3 = makeTextSprite("Ground",

 { fontsize: 24,

 borderColor: {r: 1, g: 201, b: 52, a: 1.0},

 backgroundColor: {r: 125, g: 255, b: 160,

98

a: 0.8} }

);

 spritey3.position.set(1,

 2.5,

 -22);

 scene.add(spritey3);

 var spritey4 = makeTextSprite("Ginza Line",

 { fontsize: 24,

 borderColor: {r: 238, g: 147, b: 34, a:

1.0},

 backgroundColor: {r: 244, g: 188, b: 119,

a: 0.8} }

);

 spritey4.position.set(3,

 5.5,

 -24);

 scene.add(spritey4);

 var spritey5 = makeTextSprite("To JR Line",

 { fontsize: 24,

 borderColor: {r: 1, g: 201, b: 52, a: 1.0},

 backgroundColor: {r: 125, g: 255, b: 160,

a: 0.8} }

);

 spritey5.position.set(3,

 2.5,

 -26);

 scene.add(spritey5);

}

function SetViewPortCam(x,y,w,h,render0,camera0,scene0){

 render0.setViewport(x,y,w,h+1);

 render0.setScissor(x,y,w,h+1);

 render0.enableScissorTest(true);

 camera0.aspect=w/h;

 camera0.updateProjectionMatrix();

 render0.render(scene0, camera0);

}

function render1(){

 requestAnimationFrame(render1,null);

 //Socket control

 gypoY=0.05;

 if(gypoY!==0){

 cameraDegree-=gypoY*0.016;

 }else{

 cameraDegree=degreeX;

 }

 //UPDATE ROTATION

 if(gyroX1!==0){cameraDegreeX1+=gyroX1*0.016;}

 if(gyroX2!==0){cameraDegreeX2+=gyroX2*0.016;}

 if(gyroX3!==0){cameraDegreeX3+=gyroX3*0.016;}

 if(gyroY1!==0){cameraDegreeY1-=gyroY1*0.016;}

 if(gyroY2!==0){cameraDegreeY2-=gyroY2*0.016;}

 if(gyroY3!==0){cameraDegreeY3-=gyroY3*0.016;}

99

 cameraLength1+=flip1;

 cameraLength2+=flip2;

 cameraLength3+=flip3;

 if(monkey!==null){ //Avoid (Uncaught TypeError: Cannot read

property 'rotation' of undefined)

 //After checking the object whether it is loaded or not,

starting the rotation

 //monkey.rotation.y -=0.001;

 cameraDegreeSelf+=0.01;

 }

 //Left View Port of Camera1 - Method for changing the camera

 camera.position.z = cameraLength*Math.cos(cameraDegree)-20;

 camera.position.x = cameraLength*Math.sin(cameraDegree);

 camera.up.x = 0;

 camera.up.y = 1;

 camera.up.z = 0;

 camera.lookAt({x:0, y:0, z:-20 });//-5

 renderer.setClearColor(color1);

SetViewPortCam(0,0,window.innerWidth/3.0*2,window.innerHeight,render

er,camera,scene);

 var xy10;

 //Right View Port of Camera2

 camera2.position.y = cameraLength1*Math.sin(cameraDegreeX1);

 xy10=cameraLength1*Math.cos(cameraDegreeX1);

 camera2.position.z = xy10*Math.sin(cameraDegreeY1)-20;

 camera2.position.x = xy10*Math.cos(cameraDegreeY1);

 camera2.lookAt({x:0, y:0, z:-20 });//-5

 renderer.setClearColor(color2);

 SetViewPortCam(window.innerWidth/3.0*2, window.innerHeight/3.0*2,

window.innerWidth/3.0,

window.innerHeight/3.0,renderer,camera2,scene);

 camera3.position.y = cameraLength2*Math.sin(cameraDegreeX2);

 xy10=cameraLength2*Math.cos(cameraDegreeX2);

 camera3.position.z = xy10*Math.sin(cameraDegreeY2)-20;

 camera3.position.x = xy10*Math.cos(cameraDegreeY2);

 camera3.lookAt({x:0, y:0, z:-20 });//-5

 renderer.setClearColor(color3);

 SetViewPortCam(window.innerWidth/3.0*2, window.innerHeight/3.0,

window.innerWidth/3.0,

window.innerHeight/3.0,renderer,camera3,scene);

 camera4.position.y = cameraLength3*Math.sin(cameraDegreeX3);

 xy10=cameraLength3*Math.cos(cameraDegreeX3);

 camera4.position.z = xy10*Math.sin(cameraDegreeY3)-20;

 camera4.position.x = xy10*Math.cos(cameraDegreeY3);

 camera4.lookAt({x:0, y:0, z:-20 });//-5

 renderer.setClearColor(color4);

 SetViewPortCam(window.innerWidth/3.0*2, 0, window.innerWidth/3.0,

window.innerHeight/3.0,renderer,camera4,scene);

 renderer.setSize(window.innerWidth,window.innerHeight);//The

essential method for setup 2 sub-screen correctly at the started

100

 stats.update();

}

var controls = new function(){

 this.lightx = -7;

 this.lighty = -8;

 this.lightz = -18;

 this.rotateSpeed = 0.01;

 this.lx=-7;

 this.ly=-4;

 this.lz=-18;

 //spotLight.position.set(-40, 60, 30);

};

function threeStart() {

 /*

 var gui = new dat.GUI();

 gui.add(controls,'lightx',0,7);

 gui.add(controls,'lighty',-5,15);

 gui.add(controls,'lightz',-5,15);

 gui.add(controls,'rotateSpeed',0,0.25);

 gui.add(controls,'lx',-20,20);

 gui.add(controls,'ly',-20,20);

 gui.add(controls,'lz',-60,0);

 */

 initThree();

 initCamera();

 initScene();

 initLight();

 initObject();

 initWebSocket();

 stats = initStats();

 render1();

}

function onResize(){

 renderer.setSize(window.innerWidth,window.innerHeight);

}

function roundRect(ctx, x, y, w, h, r){

 ctx.beginPath();

 ctx.moveTo(x+r, y);

 ctx.lineTo(x+w-r, y);

 ctx.quadraticCurveTo(x+w, y, x+w, y+r);

 ctx.lineTo(x+w, y+h-r);

 ctx.quadraticCurveTo(x+w, y+h, x+w-r, y+h);

 ctx.lineTo(x+r, y+h);

 ctx.quadraticCurveTo(x, y+h, x, y+h-r);

 ctx.lineTo(x, y+r);

 ctx.quadraticCurveTo(x, y, x+r, y);

 ctx.closePath();

 ctx.fill();

 ctx.stroke();

}

function makeTextSprite(message, parameters){

 if (parameters === undefined) parameters = {};

 var fontface = parameters.hasOwnProperty("fontface") ?

parameters["fontface"] : "Arial";

101

 var fontsize = parameters.hasOwnProperty("fontsize") ?

parameters["fontsize"] : 18;

 var borderThickness =

parameters.hasOwnProperty("borderThickness") ?

parameters["borderThickness"] : 4;

 var borderColor = parameters.hasOwnProperty("borderColor") ?

parameters["borderColor"] : { r:0, g:0, b:0, a:1.0 };

 var backgroundColor =

parameters.hasOwnProperty("backgroundColor") ?

parameters["backgroundColor"] : { r:255, g:255, b:255, a:1.0 };

 var canvas = document.createElement('canvas');

 var context = canvas.getContext('2d');

 context.font = "Bold " + fontsize + "px " + fontface;

 // get size data (height depends only on font size)

 var metrics = context.measureText(message);

 var textWidth = metrics.width;

 // background color

 context.fillStyle = "rgba(" + backgroundColor.r + "," +

backgroundColor.g + ","

 + backgroundColor.b + "," + backgroundColor.a + ")";

 // border color

 context.strokeStyle = "rgba(" + borderColor.r + "," + borderColor.g

+ ","

 + borderColor.b + "," + borderColor.a + ")";

 context.lineWidth = borderThickness;

 roundRect(context, borderThickness/2, borderThickness/2, textWidth

+ borderThickness, fontsize * 1.4 + borderThickness, 0);

 // 1.4 is extra height factor for text below baseline: g,j,p,q.

 // text color

 context.fillStyle = "rgba(0, 0, 0, 1.0)";

 context.fillText(message, borderThickness, fontsize +

borderThickness);

 // canvas contents will be used for a texture

 var texture = new THREE.Texture(canvas);

 texture.needsUpdate = true;

 var spriteMaterial = new THREE.SpriteMaterial(

 { map: texture, useScreenCoordinates: false });

 var sprite = new THREE.Sprite(spriteMaterial);

 sprite.scale.set(5,2.5,1.0);

 return sprite;

}

window.addEventListener('resize',onResize,false);

</script>

<style type="text/css">

 body{

 margin: 0;

 overflow: hidden;

 }

 a {

 color: #0080ff;

102

 }

 #info {

 position: absolute;

 top: 0;

 left: 25%;

 padding: 5px;

 font-size:12px;

 }

</style>

</head>

<body onload='threeStart();'>

<!--Start to run the threeStart()

 IE has some error with camera.aspect method.

 code-->

<div id="canvas3d"></div>

<div id="info"> multiple views - webgl</div>

</body>

</html>

