
Abstract: Personal computers become fast enough to render an interactive virtual reality world and gigabit local area network devices
become available easily. We can construct a large display system using them. OpenCABIN library is developed to support
constructing a large display system using multiple PCs and gigabit LAN devices. OpenCABIN library is a fundamental
software library for developing virtual reality applications. We show design concepts of OpenCABIN library. Using
OpenCABIN library, a tele-immersive application was implemented successfully. This result showed the effectiveness of
design concepts of the OpenCABIN library.

Keywords: CAVE, virtual reality application development, large display systems, software information sharing mechanism.

1. Introduction

PCs, Projectors, LCDs and network devices become
cheaper and we can easily construct large display system
hardware by combining them. To make large display
systems work, we may combine multiple screens to show a
world and must manage multiple rendering software
processes that are designed to cooperate to draw a single
world. To coordinate them, you must synchronize
information and can use shared memory technique. Shared
memory technique is easy method to make multiple
rendering processes to cooperate to draw a single world.
You can implement this easily to introduce hardware shared
memory systems but they are very expensive. In these days,
network devices become cheaper and faster, so we can
choose an information sharing mechanism via a local area
network. But it is difficult to implement it.

We are developing the OpenCABIN library. It is
designed for CAVE type VR display system rendered by
multiple PCs which are connected via a local area network.

2. OpenCABIN library

OpenCABIN library is a fundamental software library
for developing virtual reality applications. After CABIN
library was developed at the university of Tokyo[Hirose 99],
its successor, called OpenCABIN library, was developed
from scratch as opensource software. It absorbs differences
kinds of display systems, so we can easily develop
applications for a multi-screen stereoscopic display. Figure
1 shows a view that its application is running at the K-Cave
system at Keio University. When designing OpenCABIN
library we think about more than one PC display system.
Recently multi-screen display systems like CAVEs are
consisted of multiple PCs instead of a high-end graphics
workstation. In addition to this basic nature as a VR library,
it has two special features that enable application
programmers to develop VR applications easily: plug-in
mechanism and master/renderer programming paradigm.

3. Plug-in Mechanism

 From a software engineering viewpoint such as
implementation, testing, debugging, reusability, flexibility,
and quality control, it is desirable to construct a system as
several independent parts rather than as a big monolithic
part. Because of limits of almost all OpenGL
implementations, two or more processes cannot access to an
OpenGL window. So an OpenCABIN library application is
formed as plug-in software and it is loaded and executed by
an OpenCABIN library execution environment at runtime.
An execution environment can execute one or more plug-in
applications simultaneously. As a result, even though each
application shows a simple 3D object, virtual space becomes
sufficient with a lot of 3D objects. An application user can
freely select which object is appeared in the virtual space at
runtime.

ASIAGRAPH 2009 PROCEEDINGS

大画面ディスプレイアプリケーション開発のための OpenCABIN ライブラリ
OpenCABIN Library for Developing Applications on Large Display Systems
立山義祐／慶應義塾大学大学院システムデザイン・マネジメント研究科, 小木哲朗/慶應義塾大学大学院システムデザイン・マネジメ

ント研究科

Yoshisuke TATEYAMA1/Graduate School of System Design and Management, Keio University, Tetsuro Ogi2/ Graduate School of System Design
and Management, Keio University
*1tateyama@sdm.keio.ac.jp, *2ogi@sdm.keio.ac.jp

Figure 1: The OpenCABIN library supports CAVE application
development. An OpenCABIN library application is running at
the K-Cave system at Keio University.

4. Master/Renderer Programming
Paradigm

A multiple PCs display system costs cheaper than a
high-end graphics workstation, but it is difficult to
coordinate PCs to work as a single system. To clear this
situation, we introduce a local shared variable mechanism.
A local shared variable contains an application’s value and
is shared among PCs. To implement network-wide shared
values, very complex exclusive control is needed and
processing speed essentially becomes slow, but if a writer
node is limited only one node and remaining nodes only
read it, the situation becomes simple, no exclusive control is
needed and processing speed becomes fast. Display
systems are naturally separated by a master part and
renderer parts. The master part of the application
determines the application’s behaviors. When the
application determines representation to the application
operator concretely, information of the display content is
transferred from the master part to the renderer parts. The
reverse direction of information flow cannot exist except for
initialization stage of the display system. OpenCABIN
library provides programmer written callbacks invoking

callbacks for renderer part. We call this OpenCABIN
library philosophy: a master/renderer programming
paradigm.

An Op

Position
Sensors

Input
Devices

Renderer
process

Screen

Screen

Position
Sensors

Input
Devices

Controller PC Screen

Rendering
PC

Rendering
PC

Rendering
PC

mechanism and there are callbacks for master part and

enCABIN library application consists of two
part

OpenCABIN library is designed to abstract variations of
disp

. developed a seismic data visualization
sys

We implemented a version of the OpenCABIN library
nd

Hirose, M., Ogi, T., Ishiwata, S., Yamada, T., 1999. Development

Oo a, Y., Ogi, T. 2008. Seismic Data
graph 2008

s: a master part and a renderer part. A master part is
executed in a master process on a master computer, and
controls the application's behavior by producing the
application context. A renderer part is executed by renderer
processes on renderer computers, and those processes render
an application world according to reading the application
context. A master part is guaranteed that it is always
executed by a master process, so it is easy to develop
applications which access outside servers via networks, and
applications that share virtual space among CAVEs in
remote places. This feature works fine not only at tele-
immersive environment but also accessing some servers, for
example database servers, license servers, dynamic web
pages, web application services and so on.

5. OpenCABIN library for tele-immersive
environment

lay devices configurations. If you want to implement
virtual conference system using multiple large display
systems like CAVEs or tiled displays at remote places, you
must think about variations of different display system
configurations. But OpenCABIN library’s display device
abstraction mechanism reduces application development
cost. Because of master/renderer programming paradigm, it
is easy to develop some applications that communicate other
display systems.

Oonuki et al
tem in tele-immersive environment using OpenCABIN

library [Oonuki 08].

6. Conclusions

a released it as an open source software. It can help to
develop VR applications in large display systems that
consist of multiple screens and PCs. Using OpenCABIN
library, a tele-immersive application was implemented
successfully. This result showed the effectiveness of design
concepts of the OpenCABIN library.

References

and Evaluation of Immersive Multiscreen Display "CABIN".
Systems and Computers in Japan, Scripta Technica, Vol.30,
No.1, pp.13-22.
nuki, S., Tateyam
Visualization in Tele-immersion Environment. Asia
in Tokyo Proceedings, Vol. 2, No. 2, pp. 186-189.

Figure 3: A master part and renderer parts are connected via shared
values pointed by shared variables in a VR application.

Figure 2: A typical large display hardware using multiple PCs.

LAN

USB or RS-232C
Serial

Communications

Instantiation

Reading values Writing
values

Application
Program

Screen

Value
1

Screen Renderer
process

Screen Renderer
process

Value
2

Master
process

Value
3

