

Screen

Screen

Position
Sensors

Input

Devices

Controller PC Screen

Rendering
PC

Rendering
PC

Rendering

PC

Abstract: We can construct large display systems such as immersive displays CAVE or tiled display using commodity devices like

personal computers and local area network. Personal computers become fast enough to render an interactive virtual reality

world and local area network devices also become fast. But it is not easy to coordinate these devices as a single display. The

OpenCABIN library was developed to support constructing a large display system using multiple PCs and gigabit LAN

devices. OpenCABIN library is a fundamental software library for developing virtual reality applications. We show

design concepts of OpenCABIN library. Using OpenCABIN library, we implemented some useful system successfully.

These results showed the effectiveness of design concepts of the OpenCABIN library.

Keywords: Virtual Environment, Immersive Display, and Software Development

1. Introduction

Some decades ago, to construct an immersive display

system we can use full featured graphics workstations. But

in these days, these high cost machines are disappeared and

personal computers (PCs) become fast enough to render

large-scale virtual world. Not only PCs but also display

devices and network devices become cheaper. We can easily

construct large display system hardware such as a CAVE

[Cruz-Neira 93] by combining them (Figure 1) [Soares 08].

To make large display systems work, we may combine

multiple screens to show a world and must manage multiple

rendering software processes that are designed to cooperate

to draw a single world. To coordinate them, you must

synchronize information and can use shared memory

technique. Shared memory technique is easy method to

make multiple rendering processes to cooperate to draw a

single world. You can implement this easily to introduce

hardware shared memory systems but they are very

expensive. In these days, network devices become cheaper

and faster, so we can choose an information sharing

mechanism via a local area network. But it is difficult to

implement it.

We are developing the OpenCABIN library. It is designed

for CAVE type VR display system rendered by multiple PCs

that are connected via a local area network (Figure 2).

2. OpenCABIN Library

ASIAGRAPH 2013 PROCEEDINGS
 OpenCABIN ライブラリによるマルチノード没入ディスプレイのアプリケーシ

ョン開発
Development of Applications for Multi-node Immersive Display using OpenCABIN

Library

 立山義祐/慶應義塾大学大学院システムデザイン・マネジメント研究科, 小木哲朗/慶應義塾大学大学院システムデザイン・マネジメ

ント研究科

Yoshisuke TATEYAMA
1
/Graduate School of System Design and Management, Keio University, Tetsuro Ogi

2
/ Graduate School of System Design

and Management, Keio University

*
1
tateyama@sdm.keio.ac.jp, *

2
ogi@sdm.keio.ac.jp

Figure 1: A viewer was operating in an immersive display with
4 screens: KCave.

LAN

USB or RS-232C
Serial

Communications

Figure 2: Large display system hardware can be constructed
using multiple PCs and local area network devices.

67

Position

Sensors

Input

Devices

Renderer

process

OpenCABIN library is a fundamental software library
for developing virtual reality applications. After CABIN
library was developed at the university of Tokyo [Hirose 99],

its successor, called OpenCABIN library, was developed
from scratch as open-source software. It absorbs differences

 kinds of display systems, so we can easily develop
applications for a multi-screen stereoscopic display system.
Figure 1 shows a view that its application is running at the
K-Cave system at Keio University. When designing
OpenCABIN library we assumed multiple PC display
system. Recently multi-screen display systems like
CAVEs are consisted of multiple PCs instead of a high-end
graphics workstation. In addition to this basic nature as a
VR library, it has two special features that enable
application programmers to develop VR applications easily:
plug-in mechanism and master/renderer programming
paradigm.

2.1. Plugin Mechanism

From a software engineering viewpoint such as
implementation, testing, debugging, reusability, flexibility,
and quality control, it is desirable to construct a system as
several independent parts rather than as a big monolithic
part. Because of limits of almost all OpenGL
implementations, two or more processes cannot access to an
OpenGL window. So an OpenCABIN library application is
formed as plug-in software and it is loaded and executed by
an OpenCABIN library execution environment at runtime.
An execution environment can execute one or more plug-in
applications simultaneously. As a result, even though each
application shows a simple 3D object, virtual space becomes
sufficient with a lot of 3D objects. An application user can
freely select which object is appeared in the virtual space at
runtime.

2.2. Master/Renderer Programming Paradigm

with Shared Values

A multiple PCs display system costs cheaper than a
high-end graphics workstation, but it is difficult to
coordinate PCs to work as a single system. To clear this
situation, we introduce a local shared variable mechanism.

A local shared variable contains an application’s value and
is shared among PCs. To implement network-wide shared
values, exclusive control is needed and processing speed

becomes slow, but if a writer node is limited only one node
and remaining nodes only read it, the situation becomes
simple, no exclusive control is needed and processing speed
becomes fast. Display systems are naturally separated by a
master part and renderer parts. The master part of the
application determines the application’s behaviours. When
the application determines representation to the application
operator concretely, information of the display content is
transferred from the master part to the renderer parts. The
reverse direction of information flow cannot exist except for
initialization stage of the display system. OpenCABIN
library provides programmer written callbacks invoking
mechanism and there are callbacks for master part and
callbacks for renderer part. We call this OpenCABIN
library philosophy: a master/renderer programming
paradigm.

An OpenCABIN library application consists of two
parts: a master part and a renderer part. A master part is
executed in a master process on a master computer, and
controls the application's behaviour by producing the
application context. A renderer part is executed by renderer
processes on renderer computers, and those processes render
an application world according to reading the application
context. A master part is guaranteed that it is always
executed by a master process, so it is easy to develop
applications which access outside servers via networks, and
applications that share virtual space among CAVEs in
remote places. This feature works fine not only at tele-
immersive environment but also accessing some servers, for
example database servers, license servers, dynamic web
pages, web application services and so on.

3. OpenCABIN Library Applications

We developed immersive display applications using

OpenCABIN library. These implementation studies showed
that OpenCABIN library supported development of

immersive display applications. We describe two examples

Figure 3: A master part and renderer parts are connected via

shared values pointed by shared variables in a VR

application.

 Figure 4: A user was investigating 3 dimensional hypocentral
position data in KCave.

Instantiation

Reading values Writing
values

Screen

Value

1

Screen
Renderer

process

Screen
Renderer

process

Value
2

Value

3

Master

process

Application

Program

68

of applications. First one is seismic data visualization

system and second one is an immersive car driving

simulator.

3.1. Seismic Data Visualization System

We developed seismic data visualization system
[Oonuki 08]. In this system, terrain data and plate structure
data are visualized simultaneously according to the
hypocentres (Figure 4). Since these data have three-
dimensional locations, we organize database tables to have
locational data. Therefore the user can see and understand
those information intuitively, and will find characteristics of
the earthquakes and relationships among earthquakes,
terrain shapes and plate structures.

Our seismic data visualization system consists of plural
applications. Each application displays single dataset such
as hypocentral data, terrain data, basement depth data or
plate data. They were developed using OpenCABIN library.
Because each dataset includes locational information such as
latitude and longitude, these data can be merged at the same
location. A user can choose any combination of data types.
In other seismic data visualization system we developed, a
user was operating to visualize the hypocenter data and
terrain data around Tsukuba city. In this system, images
acquired from a satellite are texture mapped onto the terrain
shapes. Each sphere indicated a hypocenter: the sphere’s
position, color and radius indicated hypocentral location,
depth and magnitude. She/he could understand each
earthquake intuitively.

Figure 1 shows that a user was seeing a combination
among hypocenter, basement depth data and plate data.
Views of combination among basement depth data, sea
depth data, Pacific Ocean plate data and Philippine Sea plate
data enabled a user to understand relationships of these data.

Through the operation of this system, an expert found
that the depths of hypocenters in west Japan is relatively
shallow and hypocenters from Tokai to Kanto are
distributed on a plane. Also we can apparently see that
hypocenters are distributed along the plate.

3.2. Immersive Car Driving Simulator

To decrease traffic accidents, we want to observe drivers’
behaviors to find ways to drive safely. Observations at the
real environment include many risks to have needless but
critical accidents. Using a car driving simulator, we can
observe drivers’ behaviors in dangerous situations safely.
We constructed an immersive car driving simulator using
KCave.

Figure 5 shows an immersive car driving simulator using
OpenCABIN library in KCave. Half of KCave’s floor
screen was removed and a car cockpit was located. Our car
cockpit was composed of real car parts: a steering wheel, a
brake pedal, a gas pedal and a seat. Driver’s head position
was traced so she/he can look around and move the head
forward to watch narrow crossroad.

Course model data of the driving simulator was created
from the real town using commodity 3D model authoring
tool: Autodesk 3ds max (Figure 6).

We conducted some observation experiment where the
drivers watch when she/he drive to turn right in a narrow
crossroad. An elder driver can drive and accomplish this
task in this immersive virtual environment.

4. OpenCABIN library for tele-immersive

environment

OpenCABIN library is designed to abstract variations of
display devices configurations. If you want to implement
virtual conference system using multiple large display
systems like CAVEs or tiled displays at remote places, you
must think about variations of different display system
configurations. But OpenCABIN library’s display device
abstraction mechanism reduces application development
cost. Because of master/renderer programming paradigm, it
is easy to develop some applications that communicate other
display systems.

5. Discussion

Design choice of Application Programming Interface
(API) is important for programmers. There are some useful
scenegraph APIs such as OpenGL Performer [Rohlf 94],
OpenSG [Reiner 02], VTK [Schroeder 96] and Syzygy
[Shaeffer 03]. Scenegraph is a powerful technique for
distributed environment where system can know high level
knowledge of the contents and decrease amount of
communication. Though OpenGL is low level API, there are

Figure 5: A subject was driving in an immersive car driving
simulator.

Figure 6: Course model data of the driving simulator was
created from the real town using commodity 3D
model authoring tool: Autodesk 3ds max.

69

many programmers familiar with it and graphics hardware
vendors provide novel features via OpenGL. So it is
important for virtual environment to support OpenGL API.

Some useful systems were proposed to develop
applications for multiple PC display systems using OpenGL
API. WireGL [Humphreys 01] and its successor Chromium
[Humphreys 02] capture OpenGL commands of application
program that is executed at master node and distributes them
to rendering nodes. This approach is powerful because
system does not require programmers to modify the
application program. But it always requires systems to
communicate some amount of information between the
master node and rendering nodes at runtime.

CaveLib [Pape 97] is de-facto standard fundamental
software for CAVE system. All nodes execute a single
application program and its execution is synchronized at
some code points (typically end of the rendering iteration).
States of the input devices such as Wand and head tracking
data are distributed to rendering nodes by CaveLib system.
This system works well if the application data set is limited.

Our OpenCABIN library approach is partially same as
CaveLib at the point that the application program is
executed by all nodes. But OpenCABIN library has shared
variable mechanism and the application can acquire external
data even if it is from the Internet.

6. Conclusion

We implemented a version of the OpenCABIN library
and released it as open source software. It can help to
develop VR applications in large display systems that
consist of multiple screens and PCs. Using OpenCABIN
library, a tele-immersive application was implemented
successfully. This result showed the effectiveness of design
concepts of the OpenCABIN library.

Acknowledgment

This work was supported by JSPS KAKENHI Grant

Number 23500154.

References

Cruz-Neira, C., Sandin, D., DeFanti, T. Surround-Screen

Projection-based Virtual Reality: The Design and

Implementation of the CAVE, SIGGRAPH'93: Proceedings of

the 20th Annual Conference on Computer Graphics and

Interactive Techniques, pp. 135–142, 1993.

Hirose, M., Ogi, T., Ishiwata, S., Yamada, T., 1999. Development

and Evaluation of Immersive Multiscreen Display "CABIN".

Systems and Computers in Japan, Scripta Technica, Vol.30,

No.1, pp.13-22, 1999.

Humphreys, G., Eldridge, E., Buck, I., Stoll, G., Everett, M.,

Hanrahan, P., WireGL: a scalable graphics system for clusters,

Proceedings of the 28th annual conference on Computer

graphics and interactive techniques, p.129-140, 2001.

Humphreys, G., Houston, M., Ng, R., Frank, R., Ahern, S.,

Kirchner, P., Klosowski, J. Chromium: a stream-processing

framework for interactive rendering on clusters, ACM

Transactions on Graphics (TOG), v.21 n.3, July 2002.

Oonuki, S., Tateyama, Y., Ogi, T. 2008. Seismic Data

Visualization in Tele-immersion Environment. Asiagraph 2008

in Tokyo Proceedings, Vol. 2, No. 2, pp. 186-189, 2008.

Pape, D., Carolina Cruz-Neira, C., Czernuszenko, M., CAVE

User's Guide,

http://www.evl.uic.edu/pape/CAVE/prog/CAVEGuide.html,

1997.

Reiners, D. Opensg: A Scene Graph System for Flexible and

Efficient Realtime Rendering for Virtual and Augmented

Reality Applications, Darmstadt dissertation, 2002.

Rohlf, J. and Helman, J. IRIS performer: A high performance

multiprocessing toolkit for real–Time 3D graphics. Proceedings

of SIGGRAPH ’94, pages 381–395, 1994.

Schaeffer, B. and Goudeseune, C. Syzygy: Native PC Cluster VR,

in IEEE VR Conference, 2003.

Schroeder, William J. and Martin, Kenneth M. and Lorensen,

William E. The design and implementation of an object-

oriented toolkit for 3D graphics and visualization. Proceedings

of the 7th conference on Visualization '96, 1996.

Soares, L., Raffin, B., Jorge, J. PC Clusters for Virtual Reality.

The International Journal of Virtual Reality, 7(1):67-80 67,

2008.

70

