7. 極配置
（学習内容）
・状態フィードバックの原理を理解する
・極配置の方法を学ぶ

7.1 状態フィードバック
\[
\dot{x}(t) = Ax(t) + bu(t)
\]
\[
y(t) = c^T x(t)
\]
状態変数 \(x(t) \) は全て測定可能であると仮定し
\[
u(t) = -k^T x(t) + v(t)
\]
なるフィードバックを行う
状態フィードバック：状態変数をフィードバック係数ベクトル \(k^T \) を介してフィードバックさせる
フィードバック系の状態方程式は
\[
\dot{x}(t) = (A - bk^T) x(t) + bv(t)
\]
特性（安定性、速応性等）を示す行列は、\(A \) から \(A - bk^T \) に変わる
フィードバック系のシステムの特性は、\(A - bk^T \) の固有値に従う
フィードバック係數行列 \(k^T \) を操作することで、\(A - bk^T \) の固有値を変える
→ 極配置問題（pole assignment problem）
a) \(A - bk^T \) の固有値を複素平面の左半平面に設定することで安定性
b) \(A - bk^T \) の固有値を複素左半平面のより遠くに設定することで速応性

7.2 可制御標準形
\[
\dot{x}(t) = Ax(t) + bu(t)
\]
\[
y(t) = c^T x(t)
\]
は可制御とする。この特性方程式は \(|sI - A| = s^n + a_{n-1}s^{n-1} + \cdots + a_2s + a_1 = 0 \) と表される。
ここで
\[
P = VT = \begin{bmatrix} b & Ab & \cdots & A^{n-1}b \end{bmatrix}
\]
\[
\begin{bmatrix}
a_2 & a_3 & \cdots & a_n & 1 \\
a_3 & \ddots & \ddots & \ddots & 0 \\
\vdots & \ddots & \ddots & \ddots & \vdots \\
a_n & \ddots & \ddots & \ddots & \ddots \\
1 & \ddots & \ddots & \ddots & \ddots
\end{bmatrix}
\]
を用い、\(x = Pz \) の座標変換を行うと
\[
\begin{align*}
\mathbf{z}(t) &= P^{-1}AP\mathbf{z}(t) + P^{-1}\mathbf{b}\mathbf{u}(t) \\
y(t) &= \mathbf{c}^T P\mathbf{z}(t) = \mathbf{c}^T z(t)
\end{align*}
\]
となる。ここで、
\[
\begin{align*}
\mathbf{A} &= P^{-1}AP = \\
\vec{b} &= P^{-1}\mathbf{b} = \\
\mathbf{c}^T &= \mathbf{c}^T P = [\vec{c}_1 \, \vec{c}_2 \, \ldots \, \vec{c}_n]
\end{align*}
\]
これを可制御標準形という。

次に、状態フィードバック系
\[
\dot{\mathbf{x}}(t) = (A - b\mathbf{k}^T)\mathbf{x}(t) + b\mathbf{v}(t)
\]
に対し、同様に \(\mathbf{x} = \mathbf{Pz} \) の座標変換を行うと
\[
P\mathbf{z}(t) = (A - b\mathbf{k}^T)\mathbf{z}(t) + b\mathbf{v}(t)
\]
よって
\[
\dot{\mathbf{z}}(t) = (\mathbf{A} - \vec{b}\mathbf{k}^T)\mathbf{z}(t) + \vec{b}\mathbf{v}(t)
\]
ここで、
\[
\mathbf{k}^T P = [k_1 \, k_2 \, \ldots \, k_n]
\]
\[
\mathbf{A} - \vec{b}\mathbf{k}^T = \\
\mathbf{A} - \begin{bmatrix} k_1 \\
\vdots \\
k_n \end{bmatrix}^T P = \\
\mathbf{A} - \begin{bmatrix} k_1 \\
\vdots \\
k_n \end{bmatrix}^T = \\
\begin{bmatrix} 0 & 1 & 0 & \cdots & 0 \\
\vdots & 0 & 1 & \ddots & \vdots \\
\vdots & \vdots & 0 & \ddots & \vdots \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 1 & 0 & \cdots & 0 \\
\vdots & 0 & 1 & \ddots & \vdots \\
\vdots & \vdots & 0 & \ddots & \vdots \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & 0 \\
\vdots & 0 & 1 \end{bmatrix}
\]
\[
\begin{bmatrix} 0 \\
\vdots \\
k_n \end{bmatrix}^T = \\
\begin{bmatrix} 0 \\
\vdots \\
k_n \end{bmatrix} - \begin{bmatrix} k_1 \\
\vdots \\
k_n \end{bmatrix}^T = \\
\begin{bmatrix} 0 & 1 & 0 & \cdots & 0 \\
\vdots & 0 & 1 & \ddots & \vdots \\
\vdots & \vdots & 0 & \ddots & \vdots \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 1 & 0 & \cdots & 0 \\
\vdots & 0 & 1 & \ddots & \vdots \\
\vdots & \vdots & 0 & \ddots & \vdots \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & 0 \\
\vdots & 0 & 1 \end{bmatrix}
\]
\[
\begin{bmatrix} k_1 \\
\vdots \\
k_n \end{bmatrix} = \\
\begin{bmatrix} 0 \\
\vdots \\
k_n \end{bmatrix} - \begin{bmatrix} k_1 \\
\vdots \\
k_n \end{bmatrix} = \\
\begin{bmatrix} 0 & 1 & 0 & \cdots & 0 \\
\vdots & 0 & 1 & \ddots & \vdots \\
\vdots & \vdots & 0 & \ddots & \vdots \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 1 & 0 & \cdots & 0 \\
\vdots & 0 & 1 & \ddots & \vdots \\
\vdots & \vdots & 0 & \ddots & \vdots \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & 0 \\
\vdots & 0 & 1 \end{bmatrix}
\]
となり、これは状態フィードバック系の特性方程式が
\[
|sI - (\mathbf{A} - \vec{b}\mathbf{k}^T)| = s^n + (a_n + k_n)s^{n-1} + \cdots + (a_2 + k_2)s + (a_1 + k_1) = 0
\]
であることを意味する。

よって、係数ベクトル \(\mathbf{k} = [k_1 \, k_2 \, \ldots \, k_n] \) を適当に選ぶことで、システムの固有値を任意に設定できることがわかる。

もとの座標系では、\(\mathbf{k}^T = P^{-1} \mathbf{k}^T P \)
7.3 フィードバック係数行列の求め方

\[u(t) = -k^T x(t) + v(t) \quad k = [k_1 \ k_2 \ldots k_n] \]

の状態フィードバックにより、希望の固有値 \(r_1, r_2, \ldots, r_n \) とする

もとのシステムの特性方程式を

\[|sI-A| = s^n + a_{n-1}s^{n-1} + \cdots + a_2s + a_1 = 0 \]

可制御標準形への変換行列は

\[P = V^T \begin{bmatrix} a_2 & a_3 & \cdots & a_n & 1 \\ a_3 & \ddots & \ddots & \vdots & \vdots \\ \vdots & \ddots & \ddots & \vdots & \vdots \\ a_n & \ddots & \ddots & \ddots & \vdots \\ 1 & 0 & \cdots & \cdots & 0 \end{bmatrix} \]

と表される。また、\(k^T = k^T P \) とする

変数変換して考えると、状態フィードバック系の特性方程式は

\[s^n + (a_n + k_n)s^{n-1} + \cdots + (a_2 + k_2)s + (a_1 + k_1) = 0 \]

で表される

一方、希望固有値を持つのシステムの特性方程式は

\[(s-r_1)(s-r_2)\ldots(s-r_n) = s^n + \beta_n s^{n-1} + \cdots + \beta_2 s + \beta_1 = 0 \]

これを比較し、\(k_i = \beta_i - a_i \quad k_2 = \beta_2 - a_2 \quad \ldots \quad k_n = \beta_n - a_n \)

により \(k^T = k^T P^{-1} \begin{bmatrix} k_1 & k_2 & \ldots & k_n \end{bmatrix} \) が求まる

（例題）

\[\dot{x} = \begin{bmatrix} 4 & -3 \\ 2 & -1 \end{bmatrix} x + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u \]

に状態フィードバックを施し、固有値を \(r_1 = -5, r_2 = -6 \) に配置せよ

（解）

元のシステムの特性方程式は

\[|sI-A| = (s-4)(s+1) + 6 = s^2 - 3s + 2 = (s-1)(s-2) = 0 \]

となり、固有値は 1, 2 となる。不安定

可制御性を調べる。可制御行列は

\[V = [b \ Ab] = \begin{bmatrix} 0 & -3 \\ 1 & -1 \end{bmatrix} \]

\[|V| = 3 \neq 0 \]

となり、可制御。よって状態フィードバックが可能

A の特性方程式から

\[|sI-A| = s^2 - 3s + 2 = 0 \]

可制御標準形への変換行列は
座標変換して考えると、状態フィードバック系の特性方程式は

\[s^2 + (3 + k_2)s + (2 + k_1) = 0 \]

一方、希望固有値を持つシステムの特性方程式は

\[(s+5)(s+6) = s^2 + 11s + 30 = 0\]

よって

\[k_1 = 30 - 2 = 28 \quad k_2 = 11 + 3 = 14 \]

\[k^T = [k_1 \quad k_2] \]

（別解） 直接解法

状態フィードバック系の特性方程式は

\[sI - (A - bk^T) = \begin{bmatrix} s - 4 & 3 \\ -2 & s + 1 \end{bmatrix} + \begin{bmatrix} 0 \\ k_1 \quad k_2 \end{bmatrix} = s - 4 \frac{s - k_2 + 1}{s + k_2 + 1} \]

一方、希望固有値を持つシステムの特性方程式は

\[(s-r_1)(s-r_2) = (s+5)(s+6) = s^2 + 11s + 30 = 0\]

よって両式を比較し

\[k_2 - 3 = 11, \quad 2 - 3k_1 - 4k_2 = 30 \]

これを解くと

\[k_1 = -28, \quad k_2 = 14 \]

ゆえに

\[k^T = [-28 \quad 14] \]

（問題が大きくなると連立方程式を解くのがたいへんになる）