

材質と触感の関係

The Relationship between Texture and the Tactile Sense

非 白土寛和 (慶大) 正 前野隆司 (慶大)

*Hirokazu SHIRADO, Keio University, Hiyoshi, Kohoku-ku, Kanagawa
Takashi MAENO, Keio University

It is necessary to ascertain the human texture perception mechanism, from both the scientific aspect in ascertaining of human tactile mechanism and the engineering aspect in developing of tactile devices. In this paper, the relationship between object surface physicality and texture perception through the tactile sense through multivariate analysis is discussed. We quantified the tactile sense and texture perception through sensory evaluation. From the results, we built a model of the relationship. This model helps derive the tendency toward different types of texture such as metal, wood, plastic, fabric, etc., from object surface physicality; surface roughness, heat transfer property, and modulus of elasticity.

Key Words: Tactile Sense, Texture Perception, Surface, Multivariate Analysis, Sensory Evaluation

1. 背景と目的

触覚情報は、ヒトが物体の把持や操作、認知を行ううえで不可欠である。中でも「触感」の知覚は対象物の微細な表面状態を認知するために重要である。近年、対象物表面状態の検出・呈示を行う触覚センサ・触覚ディスプレイの開発が盛んに行われている。しかし実素材の触感をリアルに検出または惹起する装置の開発には至っていない。この原因として、触感における刺激因子が明確にされていないことが考えられる。このため、本研究では、対象の物理特性と触感の潜在的な因子との相関から触感の認識機構を解析し、触感検出・呈示を行う際の指標となり得る触感認識モデルの作成を行うことを目的とする。

2. 触感の認識メカニズム

表面状態を知覚する触感は、生理学において皮膚感覚に分類され、触、温、冷の感覚種類がある。

狭義の触覚は4つの機械受容器によって知覚される。皮膚表面から約0.7mmの深さにはマイスナー小体、メルケル小体、2mm以上深部にはパチニ小体とルフィニ終末という機械受容器が存在する。各受容器が固有の時間応答特性を持つことによって、皮膚の様々な変形を検出していると考えられている。また温度感覚は温覚と冷覚が独立して生じることで成立している。この温・冷覚の閾値は温度変化速度、順応温、刺激面積に左右される⁽¹⁾。

以上より、ヒトの触感知覚は、対象物の表面凹凸や弾性、熱伝導性といった物理特性を、各受容器より検出し、脳内で分析・統合することによって行われていると考えられる⁽²⁾。

3. 物理特性および触感の解析

3.1 物理特性の解析

対象表面の物理特性を、表面凹凸、熱特性、弾性に分類し、解析した。ただし、後述の重回帰分析における多重共線性の問題を回避するため、中心線平均粗さ、伝熱特性値、繊弾性

係数の3変数に限定した。対象試料はTable 1に示す20種である。以下に解析手法について述べる。

表面凹凸として、レーザー変位計を用いて高さデータを測定した。そのデータから中心線平均粗さを算出した。

熱特性として、文献を参考に、密度、比熱c、熱伝導率k、熱拡散率のデータを得た。また、指の初期温度T_{Bi}、対象物の初期温度T_{Bi}より、知覚する表面温度T_sは、

$$T_s = \frac{(krc)_A^{1/2} T_{Bi} + (krc)_B^{1/2} T_{Bi}}{(krc)_A^{1/2} + (krc)_B^{1/2}} \quad (1)$$

と表される⁽³⁾。本研究では、算出した物理量(k c)^{1/2}を伝熱特性値と呼ぶ。

弾性として、金属や樹脂等は文献より、布類や皮革等は引っ張り試験より繊弾性係数のデータを得た。

3.2 触感の統計解析

SD法(Semantic Differential Method)を用いた官能評価により触感を定量化した。被験者は20代の男女30人とし、Table 1評価させた。

SD法によって得られた結果を標準正規分布に従い正規化した。正規化した評価より因子分析を行い、触感の潜在的な因子を4つ抽出した。因子それぞれを「凸凹因子」、「冷たさ因子」、「湿り気因子」、「硬さ因子」と名付けた。抽出した因子によって試料別の因子得点を算出した。

Table 1 Object samples

Texture	Object
Fabric	Silk, Polyester, Denim, Felt
Laser	Velour, Nubuck, Sheep
Paper	Plain Paper, Tissue Paper
Wood	Hinoki, Balsa
Metal	Copper, Aluminum, Stainless, Albata
Plastic	Acrylic, Chloroethene
Coolite	Coolite
Rubber	Butyl-rubber
Sponge	Polyurethane

4. 触感認識機構のモデル化

まず、各物理特性と各触感因子との関係を調べるために、相関係数を算出した。Fechner は「知覚認識は対数変換した物理量を知覚することによって行われている」と述べている⁽¹⁾。この知見より、比率を除く物理特性を常用対数に変換した結果、相関は向上した。したがって、触感認識においても対数変換した物理量を認識していると考えられる。Table 2 に物理特性の対数変換値と触感の因子得点との相関係数を示す。99.5% 99.9% 信頼区間より有意判定された係数を薄い灰色および濃い灰色で示す。Table 2 より、中心線平均粗さや伝熱特性値は特定の触感因子と高い相関があるのに対し、縦弾性係数は全ての因子と一定の相関があることがわかる。

次に各触感因子に対する物理特性の影響を調べるために、各試料に対して重回帰分析を行った。95.0% 信頼区間で全ての重回帰式が有意判定された。その結果、例えば凸凹因子に関して中心平均粗さの影響とわずかな伝熱特性値の影響があることがわかった。同様に、材質の判定率と触感の因子得点との関係を調べるために、重回帰分析を行った。皮革、発泡スチロール、ゴム以外の材質の重回帰式は、95.0% 信頼区間で有意と判定された。その結果、材質認識における触感因子の役割を明らかにした。例えば、ヒトは金属を「冷たい」という触感によって、プラスチックを「硬く、平らで、湿っている」という触感によって認識していると考えられる。

以上の重回帰分析の結果より Fig.1 に示す触感認識機構のモデルを作成した。Fig.1 より、ヒトは、対象表面の物理量から惹起する触感によって様々な材質を認識していることがわかる。

重回帰分析より得られた標準偏回帰係数より、物理特性と材質認識との関係は、

$$\begin{pmatrix} Z_{\text{fabric}} \\ Z_{\text{paper}} \\ Z_{\text{wood}} \\ Z_{\text{metal}} \\ Z_{\text{plastic}} \\ Z_{\text{sponge}} \end{pmatrix} = \begin{pmatrix} 0.019 & -0.095 & 0.071 \\ 0.006 & -0.086 & 0.030 \\ 0.022 & -0.132 & 0.056 \\ -0.129 & 0.213 & 0.015 \\ -0.212 & 0.008 & -0.016 \\ 0.007 & 0.001 & -0.037 \end{pmatrix} \begin{pmatrix} \log_{10} x_1 \\ \log_{10} x_2 \\ \log_{10} x_3 \end{pmatrix} + \begin{pmatrix} 0.080 \\ 0.111 \\ 0.046 \\ 0.234 \\ 0.748 \\ 0.126 \end{pmatrix} \quad (2)$$

と定式化される。ここで x_1 は中心線平均粗さ (μm)、 x_2 は伝熱特性値 ($\text{kJ}/\text{m}^2/(\text{Ks})^{1/2}$)、 x_3 は縦弾性係数 (MPa) である。式(2)における Z は、その材質の認識の有無を表す変数である。各試料における材質判定実験の結果より、 Z 値が約 0.4 以上であれば、ヒトはその材質と認識すると考えられる。例として Table 2 に物理特性空間と金属の Z 値が 0.4 になる領域を示す。

5. 結論

対象表面の物理特性およびそこから惹起される触感知覚を測定・解析した。その結果より多変量解析を行い、触感認識機構の全体像をモデル化した。また、物理特性と材質認識の関係を定式化した。

本研究の一部は、文部科学省平成 15 年度 21 世紀 COE プログラム「知能化から生命化へのシステムデザイン」によるものであることを記し、謝意を表す。

Table 2 Correlation Coefficients between Physicality and Tactile Factor

Logarithm of Physicality	Potential Factors of Tactile Sense			
	Rough	Cold	Wet	Hard
Surface Roughness*	0.82	-0.69	-0.31	-0.57
Heat Transfer Property*	-0.59	0.83	0.43	0.28
Modulus of Elasticity*	-0.59	0.67	-0.03	0.56

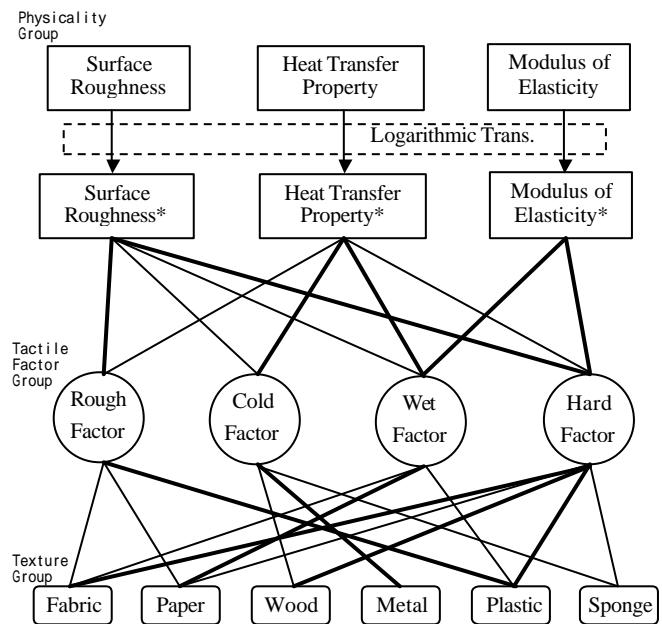


Fig. 1 Texture Perception Model

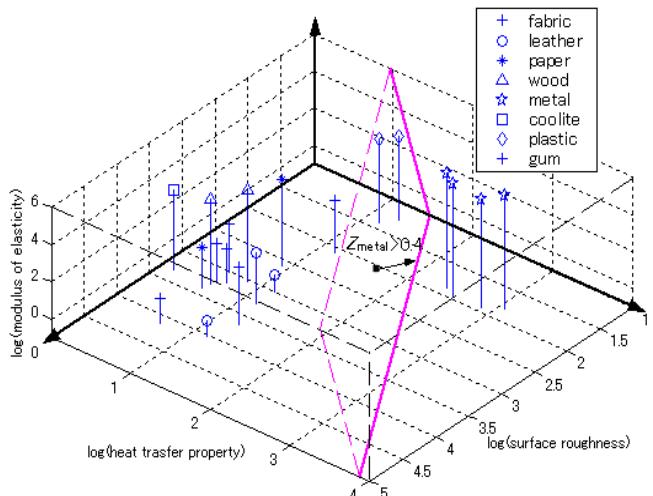


Fig. 2 The Relationship between Physicality and Metal's Texture Property

参考文献

- (1) 大山, 今井, 和氣編: 新編 感覚・知覚心理学ハンドブック, 誠信書房, 東京, 第 3 版, p. 56, pp. 1169-1364, 1994
- (2) 岩村: タッチ, 医学書院, 東京, 初版, pp. 2-7, 148-161, 2001
- (3) Frank, P. I., David, P. D.: Fundamentals of heat and mass transfer, John Wiley & Sons, New York, 3rd ed, pp. 259-262, 1990