IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL, VOL. 39, NO. 6, NOVEMBER 1992 675

Effect of the Hydrodynamic Bearing on Rotor/Stator
Contact in a Ring-Type Ultrasonic Motor

Takashi Maeno and David B. Bogy. Member, IEEE

Abstract— A hybrid numerical analysis that includes the hy-
drodynamic bearing effect and elastic contact in a ring-type ul-
trasonic motor is presented. The two-dimensional time-dependent
compressible Reynolds equation is solved numerically by a sec-
ond order time accurate, noniterative, factored implicit finite
difference algorithm. The rotor deformation is described by a
one dimensional Green’s function obtained by calculating the
actual rotor deformation due to a normal point load using a
finite element elastic analysis code. The contact problem is solved
by an iteration method so that the contact condition and the
hydrodynamic bearing condition are satisfied simultaneously. The
results show that the hydrodynamic bearing effect, especially
the squeeze effect, is significant for ultrasonic frequency contact
of the rotor and stator. Surface roughness, contact area, and
normal vibrating speed of the stator are important parameters
in the hydrodynamic bearing. The disagreement between the
friction coefficient needed in the numerical analysis and the
experimentally measured one in the previous study, which did
not include the air bearing, is settled as well.

I. INTRODUCTION

ONE of the most important points for designing an ultra-
sonic motor is the control of a dynamic contact behavior
between a rotor and a stator. Maeno er al. [1], [2] calculated
the mechanical characteristics of the ring type ultrasonic motor
by using the INIKE3D FE code. The elastic contact of the
rotor/stator, considering the shear deformation of bodies by
using a static friction coefficient 1, and a dynamic friction
coefficient p4, was simulated. A complex distribution of the
stick and slip areas within the contact region was shown.
Motor performance, including the T-N curve, power loss, and
efficiency, was calculated as well. By considering the initial
displacement of the rotor/stator, they obtained results in good
agreement with the experimental results. But the dynamic
friction coefficient pg needed in the numerical analysis was
different from the experimentally measured one.

The maximum operating torque Tinax of the ultrasonic
motor can be calculated by

Tax = palr (€))

where L is the total load and r is the contact radius. At this
torque, the entire contact area slips and the rotational speed
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of the rotor cannot be determined. If we accept the dynamic
friction coefficient (1y = 0.7) measured in our previous study,
the maximum torque must be 0.30 N-m when L = 14.7 N and
r = 29 mm. But the actual maximum torque was 0.17 N-m. In
order to obtain a T-N curve in agreement with the measured
curve, we needed to use a lower friction coefficient (pg = 0.4).
The purpose of this continuation study is to investigate this
difference of friction coefficients by introducing air bearing
effects into the contact interface.

Analyses of compressible gas films with a high frequency
variation of film thickness have been undertaken by many
researchers of hydrodynamic bearings [3],[4]. These results
suggest the possibility that the hydrodynamic bearing may
play an important roll in the high frequency contact be-
tween the rotor and stator of the ultrasonic motor. In this
study, we introduce the hydrodynamic bearing into the con-
tact between the rotor and stator in a ring-type ultrasonic
motor.

In section two, a hybrid numerical analysis scheme for solv-
ing the elastic contact and the hydrodynamic bearing simul-
taneously is presented. The two dimensional time-dependent
compressible Reynolds equation is solved numerically by a
second order time accurate, noniterative, factored implicit
finite difference algorithm derived by White and Nigam [5].
The rotor deformation is described by a one dimensional
Green’s function obtained by calculating the actual rotor
deformation due to a normal point load using the finite element
elastic analysis code JNIKE3D. The contact problem is solved
by an iteration method so that the contact condition and
the hydrodynamic bearing condition are satisfied simultane-
ously.

In section three, the calculated results are shown. The
hydrodynamic bearing effect, especially the squeeze effect,
is found to be significant for ultrasonic frequency contact
of the rotor and stator. Surface roughness, contact area, and
normal vibrating speed of the stator are important parameters
for the hydrodynamic bearing. The disagreement between
the friction coefficient needed in the numerical analysis and
the experimentally measured one in the previous study is
explained.

II. FORMULATION

A. Reynolds Lubrication Equation

The first order corrected for boundary slip compressible
Reynolds lubrication equation for a finite width bearing has
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the form

dp 6m dp
h3 e 3 hdddd
e ()] ()
a3
=A— A—[ph = 2
A glph] + A lphl + o 5 ok ®
where p(x,y,t) is the pressure, h(z, y, t) is the film thickness,
A is the bearing number, ¢ is the so-called “squeeze” number,
and m is the Knudsen number that relates the mean free path
of the gas molecules to the minimum film thickness.
Defining Z = ph, linearizing (2), and introducing a rectan-
gular mesh of p x ¢ grid points within the bearing region, we
can write the finite difference form of (2) [5] as

-Ljlaz;;=&,; (G=0p-1j=0,q-1) (3)
and
[1-LAZI =AzZ;; (i=0,p-1,j=0,4-1) (4
where
AZ@'(Z+1) — Z§3+1) _ Zi(’v]r_)
L = a[h(z + 6m)bzr + (2hZy — hp Z — A),
+ hZyy — heZy — hpo(2Z + 6m))]
L = a[h(z + 6m)byy + (2hZ, — hyZ — A)é,
+hZyy — hyZy — hyy(2Z + 6m)]

€= a[[(Z + 6m)(Zew + Zyy) + (22 + Z])| (A + B™)
= Z[Z(RSHY + b)) + Zy (BTHD + R
n 1 n
— Z(Z + 6m)[RY + Y + A2 4 h{v)]
-2(AZ, + AZ,)]
_ At
T 2

where §, and §,, are finite difference operators, superscript (n)
and (n + 1) are time step (n) and (n + 1), respectively, and
subscript z, y, and ¢ are partial differentiation.

Since L only involves operators in the z-direction, and
similarly L in the y-direction, (3) represents a set of p
simultaneous equations for the p variables AZ? ;(i = 0,p—1)
for each index j, and (4) represents a set of q simultaneous
equations for the g variables AZi(,';-H)(j =0,g — 1) for each
index i. Consequently, the problem of obtaining the solution
of the Reynolds equation reduces to the following:

1) determine the values of Z,(';) hf’;), h("+l), and their
derivatives, and calculate the values of §, g

2) for each j, invert the p x p square matrix in (3) and
obtain values of AZ}; using those of §; ;

3) for each i, invert the ¢ X ¢ square matrix in (4) and

obtain values of AZf';"'l) using those of AZ};
4) obtain the solution
(n+1) (n+1)
(nt1) _ Z; Zi,j + AZ;;
,J h(3+1) hg:r;.+1)

Then we can obtain the pressure distribution p within the
bearing region at the time step (n + 1) from the given
Z(") h(n) and h(.".‘H)

7 )

i, 11,50

B. Stator Vibration and Rotor Displacement

When the traveling wave is moving to the negative z-
direction, the normal displacement of the stator at the top of
the teeth, Wg,,, is

Wsn(i) = Ag cos2x(ft + éx(z/\;l))
Az = %

®)

where, Ag is the normal amplitude, f is the frequency, and A
is the wave length of the stator traveling wave. Also, N is the
division number of the rotor in the circumferential direction
through one wave length. On the other hand, the tangential
displacement Wg;, is

Az(i—1)

Wse(i) = Bgsin2n(ft + 5y ) ©)

where, Bgs is the tangential amplitude. Also, the tangential
velocity of the stator Vg, is

Vst(l) =

81425, = 2w fBg cos 2m(ft + é’{%_—l)

) (D

The rotor contacts with the stator at the top of this traveling
wave. Maeno et. al. [1] solved for the deformation of the three
dimensional rotor contacting the stator teeth by using the finite
element code INIKE3D. But we do not have to model the full
rotor to solve the hybrid problem between the hydrodynamic
bearing and contact becaus¢ only the normal displacement
and the tangential velocity of the rotor are needed. In this
study, we introduce a one dimensional Green’s function of
the rotor obtained by calculating the deformation of the actual
three dimensional rotor corresponding to a normal point load
using a FE code. After obtaining the one dimensional Green’s
function, we have only to use this function to solve the contact
problem. If the discrete form of the Green’s function is denoted
by G;, j, which represents the normal displacement of point j
when a unit force is applied at point ¢, the normal displacement
of the rotor at point j is

N
Wr(j) =) Gisfi ®

=1

where, f; is a point force applied at point ¢. The tangential
velocity of the rotor, Vg, is calculated from the rotating
speed. A local change of the rotor velocity due to the shear
deformation of the rotor is neglected because the local change
is small compared to the rotating speed. The relative velocity
Vel between the rotor and stator is obtained by

Veel = Ve = Vs &)
C. Hybrid Analysis of the Contact Problem Including the
Hydrodynamic Bearing Effect

If the contact pressure, the hydrodynamic bearing pressure,
and the deformation of the stator teeth are given, the rotor
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deformation can be calculated using equations (5) and (8) by
an iteration method so as to satisfy the contact condition,

fi > 0 and Wg = Ws,, at contact grids
fi = fi and Wg > Wg,, at noncontact grids

(10)

where f; is the resultant force of the hydrodynamic bearing
pressure.

On the other hand, if the spacing between each stator tooth
and the rotor spring at time (n) and (n + 1), the relative
velocity at'time (n) and (n + 1), and the pressure at time (n)
are given, the hydrodynamic pressure at time (n + 1) can be
obtained from (3) and (4). So, we can obtain by iteration the
hybrid solution of the contact problem and the hydrodynamic
bearing problem by solving each problem in order.

When the spacing between two bodies is zero, we cannot
solve the Reynold’s equation because the hydrodynamic pres-
sure becomes unbounded. But the actual surface of a body has
roughness. The surfaces of two bodies contact in a particular
area, the so called ‘real area of contact’, and the rest of the
area has some spacing distribution. So we assume that the
spacing between two contacting bodies has a certain minimum
value, H,,, that is determined by the surface roughness,
in order to solve the Reynold’s equation. The minimum
spacing H,, is taken as the mean value of the peak to valley
roughness of the two surfaces. This assumption is desirable
and reasonable because it leads to a simple calculation without
loosing the macroscopic effect of hydrodynamics. In this
manner, we can solve the Reynold’s equation with contact
considering the surface roughness and retaining the finite value
of hydrodynamic pressure.

Since the distribution of the N discrete nodes for the
rotor/stator contact problem is one dimensional in the circum-
ferential direction and the distribution of the p x ¢ nodes for
the hydrodynamic bearing problem within the interface area
on each tooth is two dimensional, we must map the values of
the variables such as p, h, Wgr, Ws,,, and V,) from one grid to
the other in each problem. For this, we use linear interpolation.
The pressure distribution p obtained from the hydrodynamic
bearing problem is summed in the radial direction for the
contact problem. On the other hand, the spacing distribution
h calculated in the contact problem

h:VVR—‘/VSn

is assumed to be uniform to the radial direction.
A flow chart of the algorithm is shown in Fig. 1. The time
step At is selected as
ar=L
m
where m is the integer and T is the vibration cycle of stator
= 1/f)(s), in order to check if the deformation and the
pressure are steady by comparing with the previous cycle.
First, the displacement at the top of the stator teeth at time ¢
due to the traveling wave is calculated by (5). Next, the rotor
deformation is calculated so as to satisfy the assumed contact
condition. For the initial calculation, the contact condition is
assumed so that the positively displaced stator teeth contact the

[ t=0 l

——>| =i+ AL |
r Calculate the shape of stator traveling wave I
» Calculate the rotor deformation for given
contact areas and air film pressure

Modify
contact
area

Satisfy
contact

condition?

Solve the Reynolds' equation to obtain
the air film pressure when the clearance
is given

yes

Is the
deformation
steady?

Fig. 1. Flowchart of analysis.

rotor. Then, the contact condition is checked to determine if
(10) is satisfied. If it is not satisfied, the contact condition
is changed and the calculation of the rotor deformation is
repeated. After the contact condition is satisfied, the hydro-
dynamic bearing pressure between each tooth and the rotor
is calculated by using the spacing at time ¢ and t — At, the
relative velocity at time ¢ and ¢t — A¢, and the pressure at time
t — At. Since the pressure at t — At is not known for the initial
calculation, the value zero is used for the initial pressure. Then
the convergence condition is checked for the pressure and the
spacing at time ¢. If convergence is not obtained, we go back to
the calculation of the rotor deformation and repeat the above. If
convergence is achieved, then we determine if the deformation
and the pressure are steady, in another words, whether or not
the deformation of the rotor and the pressure distribution are
sufficiently near the previous cycle. The steady deformation
and the pressure distribution are the required results of the
solution.

In order to estimate the effect of the hydrodynamic bearing,
we define a hydrodynamic bearing pressure ratio a by

a:éfl(i)/L

where f1(¢) is the hydrodynamic bearing load at node ¢ and
L is the total normal load. The ratio « indicates how much
of the total load is provided by the hydrodynamic lubrica-
tion pressure. Since the friction coefficient of hydrodynamic
lubrication g; is much smaller than py

(1

i K p
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Rotor spring

0.3
58

Interface between teeth and rotor spring
0.3x1.89  (51x11 nodes)

Tooth

Stator

Contact diameter 58 mm
Traveling wave length 26 mm
Number of teeth

per one traveling wave 9

Teeth width 1.89 mm
Rotor spring width 0.3 mm
Surface roughness 200 nm
Stator amplitude 2.0E-3 mmp-p
Rotor speed 180 mm/sec
Total load per one wave 2.45 N
Dynamic viscosity of air 0.181E-4 kg/m/sec
Atmospheric pressure 1.010ES Pa
Mean free path of air 0.064E-6 m
Division of rotor on circum-—

ferential direction for

contact analysis 181
Division of interface between

stator and rotor spring 51x11

Fig. 2. Schematic view of the rotor/stator and the fundamental values used
in the calculation.

we can compute the maximum operating torque Tmax bY

Trnax = Il'd(l - a)LT (12)

instead of (1). In this equation, a high oz means a low maximum
torque.

III. CALCULATED RESULTS

A. Fundamental Case

The calculation is applied to various design parameters. At
first, the deformation and the pressure are calculated for the
actual rotor/stator geometry as shown in Fig. 2, which we
call the “fundamental case.” One wave length of the rotor is
divided into 181 nodes. Each interface between a tooth and
rotor is divided into 51 x 11 nodes as well.

Fig. 3 shows the one dimensional Green’s function obtained
by calculating the actual rotor deformation due to a normal
point load using the JNIKE3D FE code.

First, the accuracy of the solution is ascertained by doubling
the mesh size. When N = 361 and p x ¢ = 101 x 21, the
difference of the resultant hydrodynamic pressure with the
fundamental case was only 12 (mN) (see Table I). So we
conclude that the division number used in the fundamental
case is large enough.

Fig. 4 shows the displacement of the rotor/stator and the
pressure distribution of the fundamental case. The traveling
wave moves to the left and the rotor moves to the right. The
upper figure shows that the rotor contacts three stator teeth
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Fig. 3. Green’s function of the rotor calculated by JNIKE3D FE code (2162
elements, 2721 nodes ).

TABLE 1

HYDRODYNAMIC BEARING LOAD AND RATIO o
Changed Variables Load (N)  Ratio
Fundamental case 0.583 0.238
p =101, ¢ =21, N = 361 0.595 0.243
Hm =100 nm 1.179 0.481
Rotor width=0.6 mm 1.141 0.466
Teeth width=1.16 mm 0.386 0.157
Teeth width=2.31 mm 0.779 0.318
Stator frequency=3 kHz 0.192 0.078
Stator frequency=20 kHz 0.550 0.224
Stator frequency=40 kHz 0.600 0.245
Stator frequency=60 kHz 0.615 0.251
“Stator frequency=100 kHz ~ 0.630  0.257
Teeth radius=3 m 0.576 0.235
Teeth radius=6.5 m 0.585 0.239
Teeth radius=10 m 0.586 0.239

at this time. The lower figure shows that the hydrodynamic
bearing effect on the rotor/stator contact is significant. Since
the contact period is short, the hydrodynamic bearing pressure
does not decrease while the rotor and stator contact. The
hydrodynamic bearing pressure ratio o of the fundamental
case is 0.24. (Hydrodynamic bearing pressure ratios for var-
jous design parameters are shown in Table L ) In order to
explain the disagreement of the friction coefficient used in
the calculation (pzg = 0.4) and the measured one (uq = 0.7)
in the previous study [1], we need a hydrodynamic bearing
pressure ratio of about 0.43. So the hydrodynamic bearing
effect obtained is somewhat small for explaining the difference
of p quantitatively.

The result calculated by neglecting a shear velocity shows
that the ratio « is almost the same as the one in the fundamental
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Fig. 4. Normal displacement and pressure distribution (fundamental case).

case. So the squeeze effect, the last term in (2), is very much
larger than the wedge effect, the first and the second terms in
the right hand side of the equation.

B. Effect of Surface Roughness

Fig. 5 shows the surface geometry of the actual rotor/stator
after driven for several hours measured by Zygo Maxim-3D.
Fig. 5(a) shows the geometry of the contact interface line on
the rotor. As the surface of the rotor spring has deep holes,
we could not measure the whole geometry of the surface
by using Zygo Maxim-3D. Fig. 5(b) shows the geometry on
one tooth of the stator. In this figure, the maximum surface
roughness of the rotor/stator are about 100 nm and 50 nm,
respectively. This value changes due to wear, the initial surface
is rougher.

Fig. 6 shows the displacement of the rotor/stator and the
pressure distribution when the minimum air bearing spacing is
100 nm. The minimum spacing represents the mean clearance
between the rotor and stator when they contact, in other
words, a value proportional to the surface roughness. When
the minimum spacing is 100 nm—meaning that the surface
roughness of the rotor and stator are about 100 nm p — p
each—the hydrodynamic bearing pressure ratio « is up to
0.48. This result shows that the hydrodynamic bearing pressure
increases when the minimum spacing decreases. In order to
reduce the effect of the hydrodynamic bearing pressure, we
must have a rough interface surface. The surface should be
designed so that the roughness does not change due to the
wear for stable motor performance, such as the T-N (torque-
rotational speed) curve and efficiency.

E 400} v
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£ - A .
© 200
I -
! !
0 0.5 1.0
Circumferential distance (mm)
(a)
E wb %
E -
o
£ 20
1 i 1
0 0.5 1.0 1.5
Circumferential distance (mm)
(b)
Fig. 5. Surface geometry of the rotor/stator interface. (a) Rotor spring.

(b) Stator tooth.
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Fig. 6. Normal displacement and pressure distribution (minimum air bearing
spacing = 100 nm ).
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= 0.6 mm).

C. Effect of Contact Area

Figs. 7 and 8 show the displacement of the rotor/stator and
the pressure distribution when the teeth width is 2.31 mm
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width  Fig. 9. Normal displacement and pressure distribution (Stator vibrating

frequency = 100 kHz).

and the rotor spring width is 0.6 mm, respectively. Results
obtained for different teeth widths and the rotor spring widths
show that the resultant hydrodynamic bearing pressure is
proportional to the interface area of the rotor/stator under the
ultrasonic frequency vibration. The smaller the interface area,
the smaller the hydrodynamic bearing pressure ratio will be.
On the other hand, a small contact area will cause a high
contact pressure and large amount of wear per unit area. So
an optimum interface area should be chosen by considering
these two pressures. A motor whose stationary limiting torque
is several times higher than the maximum operating torque
could be designed by extending the interface area, because the
hydrodynamic bearing appears only when the motor is driven.
This prospect presents a new advantage of the ultrasonic motor
when applied to high precision positioning mechanisms.

If the rotor stiffness is low, the contact area increases, and
the hydrodynamic bearing pressure ratio o increases as well.

D. Effect of Vibrating Frequency

The effect of the stator vibrating frequency is studied by
changing the stator frequency without changing the param-
eters, such as stator amplitude and rotor stiffness. Fig. 9
shows the normal displacement of the rotor/stator and the
pressure distribution when the stator frequency is 100kHz.
Fig. 10 shows the ratio a as a function of the vibrating
frequency. When the frequency is higher, the normal velocity
of the stator is higher and the squeeze effect is larger. If the
frequency is changed without changing the rotational speed of
the rotor, the change of normal velocity would be small, and
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50 100
Stator frequency (kHz)

Fig. 10. Effect of stator vibrating frequency.

the hydrodynamic bearing effect might be almost the same as
for the fundamental case.

E. Effect of Teeth Geometry

The previous calculation is performed by assuming that the
rotor/stator surfaces are flat with sharp edges. But the actual
macro geometry of a tooth surface is somewhat rounded at
the edges and the pressure distributes more uniformly because
of the wear, after it is driven for a few minutes. Therefore
we made a calculation for curved teeth. When the arc radius
is larger, the contact pressure distribution changes from the
edge peaked shape to a half circle shape (See Fig. 12). When
the radius of the teeth is 6.5 m, as shown in Fig. 11, the
distribution of the contact pressure is almost uniform. This
curve of the tooth surface corresponds quantitatively with the
geometry of the actual tooth as shown in Fig. 5 (b). Looking
at the hydrodynamic bearing, we found that the distribution of
the pressure and the ratio « scarcely change.

IV. CONCLUSION

A hybrid numerical analysis including the hydrodynamic
bearing effect and elastic contact in a ring-type ultrasonic
motor is completed. The calculation is applied to various
design parameters and the results can be summarized as
follows:

1) Calculated results of the fundamental case show that
the hydrodynamic bearing effect, especially the squeeze
effect, on the rotor/stator contact is significant. A hydro-
dynamic bearing pressure ratio o was 0.24 in the funda-
mental calculation. It is somewhat small for explaining
quantitatively the difference between the calculated and
experimental values of y in the previous study.

2) When the surface roughness of the rotor and stator
are about 100 nm p-p each, o increases up to 0.48.
In order to reduce the effect of the hydrodynamic
bearing pressure, we must increase the interface surface
roughness.

3) Results from changing the teeth width and the rotor
spring width show that « is proportional to the interface
area of the rotor/stator.
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Fig. 11. Normal displacement and pressure distribution (teeth radius
= 6.5 m).
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Fig. 12. Normal displacement and pressure distribution (teeth radius=3 m).

4) A low rotor stiffness leads to a large contact area and
large a.

5) When the frequency is higher, the normal velocity of the
stator is higher and the ratio « is larger.
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6) When the arc radius of the teeth edges increases, the

contact pressure distribution changes from the edge
peaked shape to a half circle shape. On the other hand,
the hydrodynamic bearing pressure distribution and the
ratio « scarcely change.
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